Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

There are two search modes available: simple and advanced. Simple search can include one or more words from the title, summary, keywords or full text, but does not allow the use of search operators. Advanced search allows to limit the number of search results by entering the search terms of different categories in the search window, as well as the use of Boolean search operators (AND, OR and AND NOT). In search results short formats of records are displayed and some data are displayed as links, which open a detailed description of the material (title link) or perform a new search (author or keyword link).

Help
Search in:
Options:
 


61 - 70 / 2000
First pagePrevious page3456789101112Next pageLast page
61.
Pozni neželeni učinki pri bolnikih z rakom debelega črevesa in danke po onkološkem zdravljenju
Aleksandra Grbič, Irena Oblak, 2024, published scientific conference contribution

Keywords: radioterapija, rak debelega črevesa in danke, onkološko zdravljenje
Published in DiRROS: 24.01.2025; Views: 43; Downloads: 19
.pdf Full text (2,76 MB)
This document has many files! More...

62.
Optimal strategies in fractional games: vertex cover and domination
Csilla Bujtás, Günter Rote, Zsolt Tuza, 2024, original scientific article

Abstract: In a hypergraph ${\cal H}=(V,{\cal E})$ with vertex set $V$ and edge set ${\cal E}$, a real-valued function $f: V \to [0, 1]$ is a fractional transversal if $\sum_{v\in E} f(v) \ge 1$ for every edge $E \in {\cal E}$. Its size is $|f| := \sum_{v \in V} f(v)$, and the fractional transversal number $\tau^\ast({\cal H})$ is the smallest possible $|f|$. We consider a game scenario where two players have opposite goals, one of them trying to minimize and the other to maximize the size of a fractional transversal constructed incrementally. We prove that both players have strategies to achieve their common optimum, and they can reach their goals using rational weights.
Keywords: fractional vertex cover, fractional transversal game, fractional domination game
Published in DiRROS: 24.01.2025; Views: 52; Downloads: 23
.pdf Full text (468,61 KB)
This document has many files! More...

63.
Classification of cubic tricirculant nut graphs
Ivan Damnjanović, Nino Bašić, Tomaž Pisanski, Arjana Žitnik, 2024, original scientific article

Abstract: A nut graph is a simple graph whose adjacency matrix has the eigenvalue zero with multiplicity one such that its corresponding eigenvector has no zero entries. It is known that there exist no cubic circulant nut graphs. A bicirculant (resp. tricirculant) graph is defined as a graph that admits a cyclic group of automorphisms having two (resp. three) orbits of vertices of equal size. We show that there exist no cubic bicirculant nut graphs and we provide a full classification of cubic tricirculant nut graphs.
Keywords: bicirculant, tricirculant, eigenvalue
Published in DiRROS: 24.01.2025; Views: 41; Downloads: 14
.pdf Full text (491,37 KB)
This document has many files! More...

64.
65.
66.
The Sierpiński domination number
Michael A. Henning, Sandi Klavžar, Elżbieta Kleszcz, Monika Pilśniak, 2024, original scientific article

Abstract: Let $G$ and $H$ be graphs and let $f \colon V(G)\rightarrow V(H)$ be a function. The Sierpiński product of $G$ and $H$ with respect to $f$, denoted by $G \otimes _f H$, is defined as the graph on the vertex set $V(G)\times V(H)$, consisting of $|V(G)|$ copies of $H$; for every edge $gg'$ of $G$ there is an edge between copies $gH$ and $g'H$ of $H$ associated with the vertices $g$ and $g'$ of $G$, respectively, of the form $(g,f(g'))(g',f(g))$. In this paper, we define the Sierpiński domination number as the minimum of $\gamma(G\otimes _f H)$ over all functions $f \colon V(G)\rightarrow V(H)$. The upper Sierpiński domination number is defined analogously as the corresponding maximum. After establishing general upper and lower bounds, we determine the upper Sierpiński domination number of the Sierpiński product of two cycles, and determine the lower Sierpiński domination number of the Sierpiński product of two cycles in half of the cases and in the other half cases restrict it to two values.
Keywords: Sierpiński graph, Sierpiński product, domination number, Sierpiński domination number
Published in DiRROS: 24.01.2025; Views: 42; Downloads: 23
.pdf Full text (379,57 KB)
This document has many files! More...

67.
Rak jajčnikov : zanositev in nosečnost
2024, proceedings of peer-reviewed scientific conference contributions (domestic conferences)

Abstract: Predstavljamo vam zbornik znanstvenih prispevkov, ki naslavlja kompleksen odnos med rakom jajčnikov, zanositvijo in nosečnostjo. Gre za tematiko, ki v medicinskih in raziskovalnih krogih postaja vse bolj aktualna, saj tehnološki in terapevtski napredek omogočata razvoj novih pristopov, ki izboljšujejo kakovost življenja bolnic in odpirajo možnosti za ohranjanje plodnosti tudi pri onkoloških bolnicah.
Published in DiRROS: 24.01.2025; Views: 30; Downloads: 13
.pdf Full text (1,43 MB)
This document has many files! More...

68.
HRD testiranje v Sloveniji – enoletne izkušnje
Vida Stegel, 2024, published scientific conference contribution

Keywords: ginekološki raki, rak jajčnikov, onkološko zdravljenje
Published in DiRROS: 24.01.2025; Views: 42; Downloads: 12
.pdf Full text (192,85 KB)
This document has many files! More...

69.
Okvara homologne rekombinacije (HRD) – biomarker za zdravljenje raka jajčnikov
Erik Škof, 2024, published scientific conference contribution

Keywords: ginekološki raki, rak jajčnikov, onkološko zdravljenje
Published in DiRROS: 24.01.2025; Views: 40; Downloads: 12
.pdf Full text (261,52 KB)
This document has many files! More...

70.
Konjugati protiteles in zdravil (ADC) pri zdravljenju ginekoloških rakov
Breda Škrbinc, 2024, published scientific conference contribution

Keywords: ginekološki raki, rak jajčnikov, onkološko zdravljenje
Published in DiRROS: 24.01.2025; Views: 38; Downloads: 12
.pdf Full text (277,96 KB)
This document has many files! More...

Search done in 0.69 sec.
Back to top