Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (potato) .

1 - 10 / 27
First pagePrevious page123Next pageLast page
1.
Plant molecular responses to potato virus Y : a continuum of outcomes from sensitivity and tolerance to resistance
Špela Baebler, Anna Coll Rius, Kristina Gruden, 2020, review article

Abstract: Potato virus Y (PVY) is the most economically important virus affecting potato production. PVY manipulates the plant cell machinery in order to successfully complete the infecting cycle. On the other side, the plant activates a sophisticated multilayer immune defense response to combat viral infection. The balance between these mechanisms, depending on the plant genotype and environment, results in a specific outcome that can be resistance, sensitivity, or tolerance. In this review, we summarize and compare the current knowledge on molecular events, leading to different phenotypic outcomes in response to PVY and try to link them with the known molecular mechanisms.
Keywords: potato virus Y, Potyviridae, potato, Solanum tuberosum, Solanaceae, plant immune signaling, plant hormones, tolerance, susceptibility, resistance
Published in DiRROS: 06.08.2024; Views: 168; Downloads: 155
.pdf Full text (1,06 MB)
This document has many files! More...

2.
Potato Virus Y infection hinders potato defence response and renders plants more vulnerable to Colorado potato beetle attack
Marko Petek, Ana Rotter, Polona Kogovšek, Špela Baebler, Axel Mithöfer, Kristina Gruden, 2014, original scientific article

Abstract: In the field, plants are challenged by more than one biotic stressor at the same time. In this study, the molecular interactions between potato (Solanum tuberosum L.), Colorado potato beetle (Leptinotarsa decemlineata Say; CPB) and Potato virus YNTN (PVYNTN) were investigated through analyses of gene expression in the potato leaves and the gut of the CPB larvae, and of the release of potato volatile compounds. CPB larval growth was enhanced when reared on secondary PVYNTN-infected plants, which was linked to decreased accumulation of transcripts associated with the antinutritional properties of potato. In PVYNTN-infected plants, ethylene signalling pathway induction and induction of auxin response transcription factors were attenuated, while no differences were observed in jasmonic acid (JA) signalling pathway. Similarly to rearing on virus-infected plants, CPB larvae gained more weight when reared on plants silenced in JA receptor gene (coi1). Although herbivore-induced defence mechanism is regulated predominantly by JA, response in coi1-silenced plants only partially corresponded to the one observed in PVYNTN-infected plants, confirming the role of other plant hormones in modulating this response. The release of β-barbatene and benzyl alcohol was different in healthy and PVYNTN-infected plants before CPB larvae infestation, implicating the importance of PVYNTN infection in plant communication with its environment. This was reflected in gene expression profiles of neighbouring plants showing different degree of defence response. This study thus contributes to our understanding of plant responses in agro-ecosystems.
Keywords: insect midgut transcriptional response, gene expression, plant defence, volatile organic compounds, potato
Published in DiRROS: 02.08.2024; Views: 119; Downloads: 91
.pdf Full text (959,76 KB)
This document has many files! More...

3.
Involvement of potato (Solanum tuberosum L.) MKK6 in response to Potato virus Y
Ana Lazar, Anna Coll Rius, David Dobnik, Špela Baebler, Apolonija Bedina Zavec, Jana Žel, Kristina Gruden, 2014, original scientific article

Abstract: Mitogen-activated protein kinase (MAPK) cascades have crucial roles in the regulation of plant development and in plant responses to stress. Plant recognition of pathogen-associated molecular patterns or pathogen-derived effector proteins has been shown to trigger activation of several MAPKs. This then controls defence responses, including synthesis and/or signalling of defence hormones and activation of defence related genes. The MAPK cascade genes are highly complex and interconnected, and thus the precise signalling mechanisms in specific plant%pathogen interactions are still not known. Here we investigated the MAPK signalling network involved in immune responses of potato (Solanum tuberosum L.) to Potato virus Y, an important potato pathogen worldwide. Sequence analysis was performed to identify the complete MAPK kinase (MKK) family in potato, and to identify those regulated in the hypersensitive resistance response to Potato virus Y infection. Arabidopsis has 10 MKK family members, of which we identified five in potato and tomato (Solanum lycopersicum L.), and eight in Nicotiana benthamiana. Among these, StMKK6 is the most strongly regulated gene in response to Potato virus Y. The salicylic acid treatment revealed that StMKK6 is regulated by the hormone that is in agreement with the salicylic acid-regulated domains found in the StMKK6 promoter. The involvement of StMKK6 in potato defence response was confirmed by localisation studies, where StMKK6 accumulated strongly only in Potato-virus-Y-infected plants, and predominantly in the cell nucleus. Using a yeast two-hybrid method, we identified three StMKK6 targets downstream in the MAPK cascade: StMAPK4_2, StMAPK6 and StMAPK13. These data together provide further insight into the StMKK6 signalling module and its involvement in plant defence.
Keywords: plant diseases, potato, molecular biology
Published in DiRROS: 02.08.2024; Views: 111; Downloads: 124
.pdf Full text (6,72 MB)
This document has many files! More...

4.
Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato
Špela Baebler, Kamil Witek, Marko Petek, Katja Stare, Magda Tušek-Žnidarič, Maruša Pompe Novak, Jenny Renaut, K. Szajko, D. Strzelczyk-Żyta, W. Marczewski, Karolina Morgiewicz, Kristina Gruden, Jacek Hennig, 2014, original scientific article

Abstract: The purpose of the study was to investigate the role of salicylic acid (SA) signalling in Ny-1-mediated hypersensitive resistance (HR) of potato (Solanum tuberosum L.) to Potato virus Y (PVY). The responses of the Ny-1 allele in the Rywal potato cultivar and transgenic NahG-Rywal potato plants that do not accumulate SA were characterized at the cytological, biochemical, transcriptome, and proteome levels. Analysis of noninoculated and inoculated leaves revealed that HR lesions started to develop from 3 d post inoculation and completely restricted the virus spread. At the cytological level, features of programmed cell death in combination with reactive oxygen species burst were observed. In response to PVY infection, SA was synthesized de novo. The lack of SA accumulation in the NahG plants led to the disease phenotype due to unrestricted viral spreading. Grafting experiments show that SA has a critical role in the inhibition of PVY spreading in parenchymal tissue, but not in vascular veins. The whole transcriptome analysis confirmed the central role of SA in orchestrating Ny-1-mediated responses and showed that the absence of SA leads to significant changes at the transcriptome level, including a delay in activation of expression of genes known to participate in defence responses. Moreover, perturbations in the expression of hormonal signalling genes were detected, shown as a switch from SA to jasmonic acid/ethylene signalling. Viral multiplication in the NahG plants was accompanied by downregulation of photosynthesis genes and activation of multiple energy-producing pathways.
Keywords: plant-pathogen interactions, Potato virus Y, salicylic acid, whole transcriptome analysis
Published in DiRROS: 01.08.2024; Views: 126; Downloads: 121
.pdf Full text (4,98 MB)
This document has many files! More...

5.
Network modelling unravels mechanisms of crosstalk between ethylene and salicylate signalling in potato
Živa Ramšak, Anna Coll Rius, Tjaša Stare, Oren Tzfadia, Špela Baebler, Yves Van de Peer, Kristina Gruden, 2018, original scientific article

Abstract: To develop novel crop breeding strategies, it is crucial to understand the mechanisms underlying the interaction between plants and their pathogens. Network modeling represents a powerful tool that can unravel properties of complex biological systems. In this study, we aimed to use network modeling to better understand immune signaling in potato (Solanum tuberosum). For this, we first built on a reliable Arabidopsis (Arabidopsis thaliana) immune signaling model, extending it with the information from diverse publicly available resources. Next, we translated the resulting prior knowledge network (20,012 nodes and 70,091 connections) to potato and superimposed it with an ensemble network inferred from time-resolved transcriptomics data for potato. We used different network modeling approaches to generate specific hypotheses of potato immune signaling mechanisms. An interesting finding was the identification of a string of molecular events illuminating the ethylene pathway modulation of the salicylic acid pathway through Nonexpressor of PR Genes1 gene expression. Functional validations confirmed this modulation, thus supporting the potential of our integrative network modeling approach for unraveling molecular mechanisms in complex systems. In addition, this approach can ultimately result in improved breeding strategies for potato and other sensitive crops.
Keywords: network modelling, potato, molecular biology
Published in DiRROS: 01.08.2024; Views: 120; Downloads: 148
.pdf Full text (1,77 MB)
This document has many files! More...

6.
The titre of the virus in the inoculum affects the titre of the viral RNA in the host plant and the occurrence of the disease symptoms
Maruša Pompe Novak, Maja Križnik, Kristina Gruden, 2019, original scientific article

Abstract: Potato virus Y (PVY) is the most economically important potato virus, therefore extensive research is focusing on elucidation of its interaction with the host. To obtain repeatable results, strict standardization of research methods is crucial. Mechanical inoculation by rubbing sap from a PVY infected plant onto the leaf surface together with a fine abrasive powder is the most convenient way of experimental transmission of PVY to host plants. However, factors determining reproducibility of this process need to be determined. In the present study, it was shown that higher titre of the virus in the inoculum resulted in faster increase of PVYNTN RNA titre in the inoculated leaves, as well as in faster translocation of PVYNTN from inoculated leaves into upper non-inoculated leaves. The final titre of PVYNTN RNA in upper non-inoculated leaves was independent of the virus titre in the inoculum. In addition, the occurrence of the disease symptoms was followed and the dependence to the titre of the virus in the inoculum was observed.
Keywords: krompir, virus krompirja Y, mehanska inokulacija, titer virusa, inokulum, Potato virus Y, PVY, potato, mechanical inoculation, inoculum, virus titre, symptoms
Published in DiRROS: 31.07.2024; Views: 113; Downloads: 82
.pdf Full text (289,67 KB)
This document has many files! More...

7.
Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction
Neža Turnšek, Živa Ramšak, Katja Stare, Tjaša Stare, Dominik Vodnik, Andrej Blejec, Kristina Gruden, Wolfram Weckwerth, Stefanie Wienkoop, 2015, original scientific article

Abstract: Background Potato virus Y (PVY) is a major pathogen that causes substantial economic losses in worldwide potato production. Different potato cultivars differ in resistance to PVY, from severe susceptibility, through tolerance, to complete resistance. The aim of this study was to better define the mechanisms underlying tolerant responses of potato to infection by the particularly aggressive PVYNTN strain. We focused on the dynamics of the primary metabolism-related processes during PVYNTN infection. Results A comprehensive analysis of the dynamic changes in primary metabolism was performed, which included whole transcriptome analysis, nontargeted proteomics, and photosynthetic activity measurements in potato cv. Désirée and its transgenic counterpart depleted for accumulation of salicylic acid (NahG-Désirée). Faster multiplication of virus occurred in the NahG-Désirée, with these plants developing strong disease symptoms. We show that while the dynamics of responses at the transcriptional level are extensive and bimodal, this is only partially translated to the protein level, and to the final functional outcome. Photosynthesis-related genes are transiently induced before viral multiplication is detected and it is down-regulated later on. This is reflected as a deficiency of the photosynthetic apparatus at the onset of viral multiplication only. Interestingly, specific and constant up-regulation of some RuBisCO transcripts was detected in Désirée plants, which might be important, as these proteins have been shown to interact with viral proteins. In SA-deficient and more sensitive NahG-Désirée plants, consistent down-regulation of photosynthesis-related genes was detected. A constant reduction in the photochemical efficiency from the onset of viral multiplication was identified; in nontransgenic plants this decrease was only transient. The transient reduction in net photosynthetic rate occurred in both genotypes with the same timing, and coincided with changes in stomatal conductivity. Conclusions Down-regulation of photosynthesis-related gene expression and decreased photosynthetic activity is in line with other studies that have reported the effects of biotic stress on photosynthesis. Here, we additionally detected induction of light-reaction components in the early stages of PVYNTN infection of tolerant interaction. As some of these components have already been shown to interact with viral proteins, their overproduction might contribute to the absence of symptoms in cv. Désirée.
Keywords: plant-pathogen interactions, Potato virus Y, potyviridae, salicylic acid, whole transcriptome analysis, shot-gun proteomics, photosynthetic parameters
Published in DiRROS: 29.07.2024; Views: 121; Downloads: 149
URL Link to full text
This document has many files! More...

8.
Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity
David Dobnik, Ana Lazar, Tjaša Stare, Kristina Gruden, Vivianne G. A. A. Vleeshouwers, Jana Žel, 2016, original scientific article

Abstract: Background Virus-induced gene silencing (VIGS) is an optimal tool for functional analysis of genes in plants, as the viral vector spreads throughout the plant and causes reduced expression of selected gene over the whole plant. Potato (Solanum tuberosum) is one of the most important food crops, therefore studies performing functional analysis of its genes are very important. However, the majority of potato cultivars used in laboratory experimental setups are not well amenable to available VIGS systems, thus other model plants from Solanaceae family are used (usually Nicotiana benthamiana). Wild potato relatives can be a better choice for potato model, but their potential in this field was yet not fully explored. This manuscript presents the set-up of VIGS, based on Tobacco rattle virus (TRV) in wild potato relatives for functional studies in potato–virus interactions. Results Five different potato cultivars, usually used in our lab, did not respond to silencing of phytoene desaturase (PDS) gene with TRV-based vector. Thus screening of a large set of wild potato relatives (different Solanum species and their clones) for their susceptibility to VIGS was performed by silencing PDS gene. We identified several responsive species and further tested susceptibility of these genotypes to potato virus Y (PVY) strain NTN and N. In some species we observed that the presence of empty TRV vector restricted the movement of PVY. Fluorescently tagged PVYN-GFP spread systemically in only five of tested wild potato relatives. Based on the results, Solanum venturii (VNT366-2) was selected as the most suitable system for functional analysis of genes involved in potato–PVY interaction. The system was tested by silencing two different plant immune signalling-related kinases, StWIPK and StMKK6. Silencing of StMKK6 enabled faster spreading of the virus throughout the plant, while silencing of WIPK had no effect on spreading of the virus. Conclusions The system employing S. venturii (VNT366-2) and PVYN-GFP is a suitable method for fast and simple functional analysis of genes involved in potato–PVY interactions. Additionally, a set of identified VIGS responsive species of wild potato relatives could serve as a tool for general studies of potato gene function.
Keywords: potato, virus-induced gene silencing, VIGS, potato virus Y, PVY, Solanum venturii, StWIPK, StMKK6, TRV
Published in DiRROS: 25.07.2024; Views: 141; Downloads: 136
.pdf Full text (3,26 MB)
This document has many files! More...

9.
RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases
Lydia J. R. Hunter, Samuel F. Brockington, Alex M. Murphy, Adrienne E. Pate, Kristina Gruden, Stuart A. MacFarlane, Peter Palukaitis, John P. Carr, 2016, original scientific article

Abstract: Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7.
Keywords: RNA polymerases, RNA, potato
Published in DiRROS: 25.07.2024; Views: 216; Downloads: 129
.pdf Full text (1,53 MB)
This document has many files! More...

10.
Salicylic acid perturbs sRNA-gibberellin regulatory network in immune response of potato to Potato virus Y infection
Maja Križnik, Marko Petek, David Dobnik, Živa Ramšak, Špela Baebler, Stephan Pollmann, Jan F. Kreuze, Jana Žel, Kristina Gruden, 2017, original scientific article

Abstract: Potato virus Y is the most economically important potato viral pathogen. We aimed at unraveling the roles of small RNAs (sRNAs) in the complex immune signaling network controlling the establishment of tolerant response of potato cv. Désirée to the virus. We constructed a sRNA regulatory network connecting sRNAs and their targets to link sRNA level responses to physiological processes. We discovered an interesting novel sRNAs-gibberellin regulatory circuit being activated as early as 3 days post inoculation (dpi) before viral multiplication can be detected. Two endogenous sRNAs, miR167 and phasiRNA931 were predicted to regulate gibberellin biosynthesis genes GA20-oxidase and GA3-oxidase. The increased expression of phasiRNA931 was also reflected in decreased levels of GA3-oxidase transcripts. Moreover, decreased concentration of gibberellin confirmed this regulation. The functional relation between lower activity of gibberellin signaling and reduced disease severity was previously confirmed in Arabidopsis-virus interaction using knockout mutants. We further showed that this regulation is salicylic acid-dependent as the response of sRNA network was attenuated in salicylic acid-depleted transgenic counterpart NahG-Désirée expressing severe disease symptoms. Besides downregulation of gibberellin signaling, regulation of immune receptor transcripts by miR6022 as well as upregulation of miR164, miR167, miR169, miR171, miR319, miR390, and miR393 in tolerant Désirée, revealed striking similarities to responses observed in mutualistic symbiotic interactions. The intertwining of different regulatory networks revealed, shows how developmental signaling, disease symptom development, and stress signaling can be balanced.
Keywords: gibberellin, miRNA/siRNA, plant immunity, potato, Potato virus Y, salicylic acid, symbiosis, tolerance
Published in DiRROS: 25.07.2024; Views: 132; Downloads: 85
.pdf Full text (4,19 MB)
This document has many files! More...

Search done in 0.23 sec.
Back to top