Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (plasmid) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Electrotransfer of plasmid DNA radiosensitizes B16F10 tumors through activation of immune response
Monika Savarin, Urška Kamenšek, Maja Čemažar, Richard Heller, Gregor Serša, 2017, original scientific article

Abstract: Tumor irradiation combined with adjuvant treatments, either vascular targeted or immunomodulatory, is under intense investigation. Gene electrotransfer of therapeutic genes is one of these approaches. The aim of this study was to determine, whether gene electrotransfer of plasmid encoding shRNA for silencing endoglin, with vascular targeted effectiveness, can radiosensitize melanoma B16F10 tumors. Materials and methods. The murine melanoma B16F10 tumors, growing on the back of C57Bl/6 mice, were treated by triple gene electrotransfer and irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice. Furthermore, histological analysis of tumors (necrosis, apoptosis, proliferation, vascularization, presence of hypoxia and infiltration of immune cells,) was used to evaluate the therapeutic mechanisms. Results. Gene electrotransfer of plasmid silencing endoglin predominantly indicated vascular targeted effects of the therapy, since significant tumor growth delay and 44% of tumor free mice were obtained. In addition, irradiation had minor effects on radioresistant melanoma, with 11% of mice tumor free. The combined treatment resulted in excellent effectiveness with 88% of mice tumor free, with more than half resistant to secondary tumor challenge, which was observed also with the plasmid devoid of the therapeutic gene. Histological analysis of tumors in the combined treatment group, demonstrated similar mode of action of the gene electrotransfer of plasmid encoding shRNA for silencing endoglin and devoid of it, both through the induction of an immune response. Conclusions. The results of this study indicate that irradiation can in radioresistant melanoma tumors, by release of tumor associated antigens, serve as activator of the immune response, besides directly affecting tumor cells and vasculature. The primed antitumor immune response can be further boosted by gene electrotransfer of plasmid, regardless of presence of the therapeutic gene, which was confirmed by the high radiosensitization, resulting in prolonged tumor growth delay and 89% of tumor free mice that were up to 63% resistant to secondary challenge of tumor. In addition, gene electrotransfer of therapeutic plasmid for silencing endoglin has also a direct effect on tumor vasculature and tumors cells; however in combination with radiotherapy this effect was masked by pronounced immune response.
Keywords: gene therapy, electrotransfer, plasmid, irradiation, immune response, melanoma
Published in DiRROS: 24.05.2024; Views: 79; Downloads: 32
.pdf Full text (1,13 MB)

2.
Recovering high-quality bacterial genomes from cross-contaminated cultures : a case study of marine Vibrio campbellii
Neža Orel, Eduard Fadeev, Gerhard J. Herndl, Valentina Turk, Tinkara Tinta, 2024, original scientific article

Abstract: Background: Environmental monitoring of bacterial pathogens is critical for disease control in coastal marine ecosystems to maintain animal welfare and ecosystem function and to prevent significant economic losses. This requires accurate taxonomic identification of environmental bacterial pathogens, which often cannot be achieved by commonly used genetic markers (e.g., 16S rRNA gene), and an understanding of their pathogenic potential based on the information encoded in their genomes. The decreasing costs of whole genome sequencing (WGS), combined with newly developed bioinformatics tools, now make it possible to unravel the full potential of environmental pathogens, beyond traditional microbiological approaches. However, obtaining a high-quality bacterial genome, requires initial cultivation in an axenic culture, which is a bottleneck in environmental microbiology due to cross-contamination in the laboratory or isolation of non-axenic strains. Results: We applied WGS to determine the pathogenic potential of two Vibrio isolates from coastal seawater. During the analysis, we identified cross-contamination of one of the isolates and decided to use this dataset to evaluate the possibility of bioinformatic contaminant removal and recovery of bacterial genomes from a contaminated culture. Despite the contamination, using an appropriate bioinformatics workflow, we were able to obtain high quality and highly identical genomes (Average Nucleotide Identity value 99.98%) of one of the Vibrio isolates from both the axenic and the contaminated culture. Using the assembled genome, we were able to determine that this isolate belongs to a sub-lineage of Vibrio campbellii associated with several diseases in marine organisms. We also found that the genome of the isolate contains a novel Vibrio plasmid associated with bacterial defense mechanisms and horizontal gene transfer, which may offer a competitive advantage to this putative pathogen. Conclusions: Our study shows that, using state-of-the-art bioinformatics tools and a sufficient sequencing effort, it is possible to obtain high quality genomes of the bacteria of interest and perform in-depth genomic analyses even in the case of a contaminated culture. With the new isolate and its complete genome, we are providing new insights into the genomic characteristics and functional potential of this sub-lineage of V. campbellii. The approach described here also highlights the possibility of recovering complete bacterial genomes in the case of non-axenic cultures or obligatory co-cultures.
Keywords: whole-genome assembly, non-axenic culture, plasmid, marine bacteria, marine biology
Published in DiRROS: 28.03.2024; Views: 199; Downloads: 86
.pdf Full text (5,87 MB)
This document has many files! More...

3.
Evaluation of a novel plasmid for simultaneous gene electrotransfer-mediated silencing of CD105 and CD146 in combination with irradiation
Monika Savarin, Urška Kamenšek, Katarina Žnidar, Vesna Todorović, Gregor Serša, Maja Čemažar, 2021, original scientific article

Abstract: Targeting tumor vasculature through specific endothelial cell markers represents a promising approach for cancer treatment. Here our aim was to construct an antibiotic resistance gene-free plasmid encoding shRNAs to simultaneously target two endothelial cell markers, CD105 and CD146, and to test its functionality and therapeutic potential in vitro when delivered by gene electrotransfer (GET) and combined with irradiation (IR). Functionality of the plasmid was evaluated by determining the silencing of the targeted genes using qRT-PCR. Antiproliferative and antiangiogenic effects were determined by the cytotoxicity assay tube formation assay and wound healing assay in murine endothelial cells 2H-11. The functionality of the plasmid construct was also evaluated in malignant melanoma tumor cell line B16F10. Additionally, potential activation of immune response was measured by induction of DNA sensor STING and proinflammatory cytokines by qRT-PCR in endothelial cells 2H-11. We demonstrated that the plasmid construction was successful and can efficiently silence the expression of the two targeted genes. As a consequence of silencing, reduced migration rate and angiogenic potential was confirmed in 2H-11 endothelial cells. Furthermore, induction of DNA sensor STING and proinflammatory cytokines were determined, which could add to the therapeutic effectiveness when used in vivo. To conclude, we successfully constructed a novel plasmid DNA with two shRNAs, which holds a great promise for further in vivo testing.
Keywords: CD105, CD146, plasmid, gene electrotransfer
Published in DiRROS: 21.09.2022; Views: 575; Downloads: 327
.pdf Full text (4,74 MB)
This document has many files! More...

Search done in 0.09 sec.
Back to top