Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (metagenomics) .

1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Microbial consortiums of putative degraders of low-density polyethylene-associated compounds in the ocean
Mario Pinto, Zihao Zhao, Katja Klun, Eugen Libowitzky, Gerhard J. Herndl, 2022, original scientific article

Abstract: Polyethylene (PE) is one of the most abundant plastics in the ocean. The development of a biofilm on PE in the ocean has been reported, yet whether some of the biofilm-forming organisms can biodegrade this plastic in the environment remains unknown. Via metagenomics analysis, we taxonomically and functionally analyzed three biofilm communities using low-density polyethylene (LDPE) as their sole carbon source for 2 years. Several of the taxa that increased in relative abundance over time were closely related to known degraders of alkane and other hydrocarbons. Alkane degradation has been proposed to be involved in PE degradation, and most of the organisms increasing in relative abundance over time harbored genes encoding proteins essential in alkane degradation, such as the genes alkB and CYP153, encoding an alkane monooxygenase and a cytochrome P450 alkane hydroxylase, respectively. Weight loss of PE sheets when incubated with these communities and chemical and electron microscopic analyses provided evidence for alteration of the PE surface over time. Taken together, these results provide evidence for the utilization of LDPE-associated compounds by the prokaryotic communities. This report identifies a group of genes potentially involved in the degradation of the LDPE polymeric structure and/or associated plastic additives in the ocean and describes a phylogenetically diverse community of plastic biofilm-dwelling microbes with the potential for utilizing LDPE-associated compounds as carbon and energy source. IMPORTANCE Low-density polyethylene (LDPE) is one of the most used plastics worldwide, and a large portion of it ends up in the ocean. Very little is known about its fate in the ocean and whether it can be biodegraded by microorganisms. By combining 2-year incubations with metagenomics, respiration measurements, and LDPE surface analysis, we identified bacteria and associated genes and metabolic pathways potentially involved in LDPE biodegradation. After 2 years of incubation, two of the microbial communities exhibited very similar taxonomic compositions mediating changes to the LDPE pieces they were incubated with. We provide evidence that there are plastic-biofilm dwelling bacteria in the ocean that might have the potential to degrade LDPE-associated compounds and that alkane degradation pathways might be involved.
Keywords: LDPE, ocean, biodegradation, biofilms, metagenomics
Published in DiRROS: 16.07.2024; Views: 213; Downloads: 103
.pdf Full text (6,01 MB)
This document has many files! More...

2.
Looking beyond virus detection in RNA sequencing data : lessons learned from a community-based effort to detect cellular plant pathogens and pests
Annelies Haegeman, Yoika Foucart, Kris De Jonghe, Thomas Goedefroit, Maher Al Rwahnih, Neil Boonham, Thierry Candresse, Yahya Gaafar, Oscar Hurtado-Gonzales, Zala Kogej Zwitter, Denis Kutnjak, Janja Lamovšek, Irena Mavrič Pleško, 2023, original scientific article

Abstract: High-throughput sequencing (HTS), more specifically RNA sequencing of plant tissues, has become an indispensable tool for plant virologists to detect and identify plant viruses. During the data analysis step, plant virologists typically compare the obtained sequences to reference virus databases. In this way, they are neglecting sequences without homologies to viruses, which usually represent the majority of sequencing reads. We hypothesized that traces of other pathogens might be detected in this unused sequence data. In the present study, our goal was to investigate whether total RNA-seq data, as generated for plant virus detection, is also suitable for the detection of other plant pathogens and pests. As proof of concept, we first analyzed RNA-seq datasets of plant materials with confirmed infections by cellular pathogens in order to check whether these non-viral pathogens could be easily detected in the data. Next, we set up a community effort to re-analyze existing Illumina RNA-seq datasets used for virus detection to check for the potential presence of non-viral pathogens or pests. In total, 101 datasets from 15 participants derived from 51 different plant species were re-analyzed, of which 37 were selected for subsequent in-depth analyses. In 29 of the 37 selected samples (78%), we found convincing traces of non-viral plant pathogens or pests. The organisms most frequently detected in this way were fungi (15/37 datasets), followed by insects (13/37) and mites (9/37). The presence of some of the detected pathogens was confirmed by independent (q)PCRs analyses. After communicating the results, 6 out of the 15 participants indicated that they were unaware of the possible presence of these pathogens in their sample(s). All participants indicated that they would broaden the scope of their bioinformatic analyses in future studies and thus check for the presence of non-viral pathogens. In conclusion, we show that it is possible to detect non-viral pathogens or pests from total RNA-seq datasets, in this case primarily fungi, insects, and mites. With this study, we hope to raise awareness among plant virologists that their data might be useful for fellow plant pathologists in other disciplines (mycology, entomology, bacteriology) as well.
Keywords: plant viruses, plant virus detection, plant virology, high-throughput sequencing, RNA sequencing, plant tissues, plant pathogen, diagnostics, high-throughput sequencing, metagenomics, metatranscriptomics
Published in DiRROS: 12.07.2024; Views: 142; Downloads: 114
.pdf Full text (1,70 MB)

3.
Jellyfish detritus supports niche partitioning and metabolic interactions among pelagic marine bacteria
Tinkara Tinta, Zihao Zhao, Barbara Bayer, Gerhard J. Herndl, 2023, original scientific article

Abstract: Background: Jellyfsh blooms represent a signifcant but largely overlooked source of labile organic matter (jelly-OM) in the ocean, characterized by a high protein content. Decaying jellyfsh are important carriers for carbon export to the ocean’s interior. To accurately incorporate them into biogeochemical models, the interactions between microbes and jelly-OM have yet to be fully characterized. We conducted jelly-OM enrichment experiments in microcosms to simulate the scenario experienced by the coastal pelagic microbiome after the decay of a jellyfsh bloom. We combined metagenomics, endo- and exo-metaproteomic approaches to obtain a mechanistic understanding on the metabolic network operated by the jelly-OM degrading bacterial consortium. Results: Our analysis revealed that OM released during the decay of jellyfsh blooms triggers a rapid shufing of the taxonomic and functional profle of the pelagic bacterial community, resulting in a signifcant enrichment of protein/amino acid catabolism-related enzymes in the jelly-OM degrading community dominated by Pseudoalteromonadaceae, Alteromonadaceae and Vibrionaceae, compared to unamended control treatments. In accordance with the proteinaceous character of jelly-OM, Pseudoalteromonadaceae synthesized and excreted enzymes associated with proteolysis, while Alteromonadaceae contributed to extracellular hydrolysis of complex carbohydrates and organophosphorus compounds. In contrast, Vibrionaceae synthesized transporter proteins for peptides, amino acids and carbohydrates, exhibiting a cheater-type lifestyle, i.e. benefting from public goods released by others. In the late stage of jelly-OM degradation, Rhodobacteraceae and Alteromonadaceae became dominant, growing on jelly-OM left-overs or bacterial debris, potentially contributing to the accumulation of dissolved organic nitrogen compounds and inorganic nutrients, following the decay of jellyfsh blooms. Conclusions: Our fndings indicate that specifc chemical and metabolic fngerprints associated with decaying jellyfsh blooms are substantially diferent to those previously associated with decaying phytoplankton blooms, potentially altering the functioning and biogeochemistry of marine systems. We show that decaying jellyfsh blooms are associated with the enrichment in extracellular collagenolytic bacterial proteases, which could act as virulence factors in human and marine organisms’ disease, with possible implications for marine ecosystem services. Our study also provides novel insights into niche partitioning and metabolic interactions among key jelly-OM degraders
Keywords: jellyfish detritus, microbial consortia, metagenomics, metaproteomics, exoproteomics
Published in DiRROS: 09.08.2023; Views: 632; Downloads: 344
.pdf Full text (5,20 MB)
This document has many files! More...

4.
In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem
Mark Paul Selda Rivarez, Anja Pecman, Katarina Bačnik, Olivera Maksimović, Ana Vučurović, Gabrijel Seljak, Nataša Mehle, Ion Gutiérrez-Aguirre, Maja Ravnikar, Denis Kutnjak, 2023, original scientific article

Abstract: Background: In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. Results: Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. Conclusions: We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies.
Keywords: tomato, weed, virus, viroid, virome, virus discovery, virus diversity, phylogenetics, metagenomics, viromics
Published in DiRROS: 13.04.2023; Views: 834; Downloads: 190
URL Link to file

Search done in 0.21 sec.
Back to top