Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (epigenetics) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Expression of LOC285758, a potential long non-coding biomarker, is methylation- dependent and correlates with glioma malignancy grade
Alenka Matjašič, Mara Popović, Boštjan Matos, Damjan Glavač, 2017, original scientific article

Abstract: Background. Identifying the early genetic drivers can help diagnose glioma tumours in their early stages, before becoming malignant. However, there is emerging evidence that disturbance of epigenetic mechanisms also con- tributes to cell's malignant transformation and cancer progression. Long non-coding RNAs are one of key epigenetic modulators of signalling pathways, since gene expression regulation is one of their canonical mechanisms. The aim of our study was to search new gliomagenesis-specific candidate lncRNAs involved in epigenetic regulation. Patients and methods. We used a microarray approach to detect expression profiles of epigenetically involved lncRNAs on a set of 12 glioma samples, and selected LOC285758 for further qPCR expression validation on 157 glioma samples of different subtypes. To establish if change in expression is a consequence of epigenetic alterations we determined methylation status of lncRNA's promoter using MS-HRM. Additionally, we used the MLPA analysis for de- termining the status of known glioma biomarkers and used them for association analyses. Results. In all glioma subtypes levels of LOC285758 were significantly higher in comparison to normal brain reference RNA, and expression was inversely associated with promoter methylation. Expression substantially differs between astrocytoma and oligodendroglioma, and is elevated in higher WHO grades, which also showed loss of methylation. Conclusions. Our study revealed that lncRNA LOC285758 changed expression in glioma is methylation-dependent and methylation correlates with WHO malignancy grade. Methylation is also distinctive between astrocytoma I-III and other glioma subtypes and may thus serve as an additional biomarker in glioma diagnosis.
Keywords: glioma, epigenetics, methylation
Published in DiRROS: 03.06.2024; Views: 95; Downloads: 91
.pdf Full text (714,71 KB)
This document has many files! More...

2.
Identification of epigenetically regulated genes involved in plant-virus interaction and their role in virus-triggered induced resistance
Régis L. Corrêa, Denis Kutnjak, Silvia Ambrós, Mónica Bustos, Santiago F. Elena, 2024, original scientific article

Abstract: Background: Plant responses to a wide range of stresses are known to be regulated by epigenetic mechanisms. Path-ogen-related investigations, particularly against RNA viruses, are however scarce. It has been demonstrated that Arabi-dopsis thaliana plants defective in some members of the RNA-directed DNA methylation (RdDM) or histone modi-fication pathways presented differential susceptibility to the turnip mosaic virus. In order to identify genes directly targeted by the RdDM-related RNA Polymerase V (POLV ) complex and the histone demethylase protein JUMONJI14 (JMJ14) during infection, the transcriptomes of infected mutant and control plants were obtained and integrated with available chromatin occupancy data for various epigenetic proteins and marks. Results: A comprehensive list of virus-responsive gene candidates to be regulated by the two proteins was obtained. Twelve genes were selected for further characterization, confirming their dynamic regulation during the course of infection. Several epigenetic marks on their promoter sequences were found using in silico data, raising confidence that the identified genes are actually regulated by epigenetic mechanisms. The altered expression of six of these genes in mutants of the methyltransferase gene CURLY LEAF and the histone deacetylase gene HISTONE DEACETYLASE 19 suggests that some virus-responsive genes may be regulated by multiple coordinated epigenetic complexes. A temporally separated multiple plant virus infection experiment in which plants were transiently infected with one virus and then infected by a second one was designed to investigate the possible roles of the identified POLV- and JMJ14-regulated genes in wild-type (WT ) plants. Plants that had previously been stimulated with viruses were found to be more resistant to subsequent virus challenge than control plants. Several POLV- and JMJ14-regulated genes were found to be regulated in virus induced resistance in WT plants, with some of them poisoned to be expressed in early infection stages. Conclusions: A set of confident candidate genes directly regulated by the POLV and JMJ14 proteins during virus infection was identified, with indications that some of them may be regulated by multiple epigenetic modules. A sub-set of these genes may also play a role in the tolerance of WT plants to repeated, intermittent virus infections.Keywords Biotic stress, Defense priming, Epigenetics, Histone modifications, Induced resistance, Potyvirus, RNA-directed DNA methylation.
Keywords: biotic stress, defense priming, epigenetics, histone modifications, induced resistance, Potyvirus, RNA-directed DNA methylation
Published in DiRROS: 17.05.2024; Views: 149; Downloads: 830
.pdf Full text (6,66 MB)
This document has many files! More...

Search done in 0.05 sec.
Back to top