1081. Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessmentEdward J. Perkins, Roman Ashauer, Lyle Burgoon, Rory Conolly, Brigitte Landesmann, Cameron Mackay, Cheryl A. Murphy, Nathan Pollesch, James R. Wheeler, Anže Županič, Stefan Scholz, 2019, review article Abstract: An important goal in toxicology is the development of new ways to increase the speed, accuracy, and applicability of chemical hazard and risk assessment approaches. A promising route is the integration of in vitro assays with biological pathway information. We examined how the adverse outcome pathway (AOP) framework can be used to develop pathway-based quantitative models useful for regulatory chemical safety assessment. By using AOPs as initial conceptual models and the AOP knowledge base as a source of data on key event relationships, different methods can be applied to develop computational quantitative AOP models (qAOPs) relevant for decision making. A qAOP model may not necessarily have the same structure as the AOP it is based on. Useful AOP modeling methods range from statistical, Bayesian networks, regression, and ordinary differential equations to individual-based models and should be chosen according to the questions being asked and the data available. We discuss the need for toxicokinetic models to provide linkages between exposure and qAOPs, to extrapolate from in vitro to in vivo, and to extrapolate across species. Finally, we identify best practices for modeling and model building and the necessity for transparent and comprehensive documentation to gain confidence in the use of qAOP models and ultimately their use in regulatory applications. Environ Toxicol Chem 2019;38:1850–1865. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. Keywords: Quantitative Adverse Outcome pathways, TKTD modelling, alternatives to animal testing, predictive toxicology, species extrapolation, prioritization of chemicals Published in DiRROS: 06.08.2024; Views: 313; Downloads: 203 Full text (1,11 MB) This document has many files! More... |
1082. Predator-prey interactions and eavesdropping in vibrational communication networksMeta Virant-Doberlet, Ana Kuhelj, Jernej Polajnar, Rok Šturm, 2019, review article Abstract: Due to human perceptional bias in favor of air-borne sounds, substrate-borne vibrational signaling has been traditionally regarded as a highly specialized, inherently short-range and, consequently, a private communication channel, free from eavesdropping by sexual competitors and predators. In this review, we synthesize current knowledge pertinent to the view that most animals live in a rich vibratory world, where vibrational information is available to unintended receivers. In recent years, we realized that vibrational signaling is one of the oldest and taxonomically most widespread forms of communication by mechanical waves and that receptors detecting substrate vibrations are ubiquitous. In nature, substrate vibrations are reliable source of information readily available to all members of the animal community able to detect them. Viewing vibrational communication in more relevant ecological context reveals that animals relying on substrate vibrations live in complex communication networks. Long evolutionary history of this communication channel is reflected in varied and sophisticated predator-prey interactions guided by substrate-borne vibrations. Eavesdropping and exploitation of vibrational signals used in sexual communication have been so far largely neglected; however, existing studies show that generalist arthropod predators can intercept such signals emitted by insects to obtain information about prey availability and use that information when making foraging decisions. Moreover, males which advertise themselves for longer periods than females and with vibrational signals of higher amplitude face higher predation risk. It is likely that eavesdropping and exploitation of vibrational signals are major drivers in the evolution taking place in the vibratory world and we believe that studies of interspecific interactions guided by substrate vibrations will, in the future, offer numerous opportunities to unravel mechanisms that are central to understanding behavior in general. Keywords: biotremology, vibrational communication, communication network, predator-prey interactions, eavesdropping Published in DiRROS: 06.08.2024; Views: 491; Downloads: 438 Full text (1,84 MB) This document has many files! More... |
1083. Plant hormones in phytoplasma infected plantsMarina Dermastia, 2019, review article Abstract: Phytoplasmas are bacterial plant pathogens that need a plant host and an insect vector for their spread and survival. In plants, the physiological responses that phytoplasmas trigger result in symptom development through effects on hormonal, nutritional, and stress signaling pathways, and the interactions between these. In this review, recent advances on the involvement of plant hormones together with their known and deduced roles in plants infected with phytoplasmas are discussed. Several studies have directly, or in many cases indirectly, addressed plant hormone systems in phytoplasma-infected plants. These have provided accumulating evidence that phytoplasmas extensively affect plant hormone pathways. Phytoplasmas thus, with disturbing complex plant hormone networks, suppress plant immunity and modify plant structure, while optimizing their nutrient acquisition and facilitating their colonization of the plants, and their dissemination among plants by their insect vectors. Keywords: hormone crosstalk, host plant, jasmonic acid, phytoplasma, plant hormone, salicylic acid Published in DiRROS: 06.08.2024; Views: 437; Downloads: 255 Full text (451,18 KB) This document has many files! More... |
1084. Jellyfish-associated microbiome in the marine environment : exploring its biotechnological potentialTinkara Tinta, Tjaša Kogovšek, Katja Klun, Alenka Malej, Gerhard J. Herndl, Valentina Turk, 2019, review article Abstract: Despite accumulating evidence of the importance of the jellyfish-associated microbiome to jellyfish, its potential relevance to blue biotechnology has only recently been recognized. In this review, we emphasize the biotechnological potential of host–microorganism systems and focus on gelatinous zooplankton as a host for the microbiome with biotechnological potential. The basic characteristics of jellyfish-associated microbial communities, the mechanisms underlying the jellyfish-microbe relationship, and the role/function of the jellyfish-associated microbiome and its biotechnological potential are reviewed. It appears that the jellyfish-associated microbiome is discrete from the microbial community in the ambient seawater, exhibiting a certain degree of specialization with some preferences for specific jellyfish taxa and for specific jellyfish populations, life stages, and body parts. In addition, different sampling approaches and methodologies to study the phylogenetic diversity of the jellyfish-associated microbiome are described and discussed. Finally, some general conclusions are drawn from the existing literature and future research directions are highlighted on the jellyfish-associated microbiome. Keywords: Cnidaria, Ctenophora, biodiversity, bioactive compounds, microbial communities, blue biotechnology Published in DiRROS: 06.08.2024; Views: 423; Downloads: 289 Full text (860,11 KB) This document has many files! More... |
1085. Marine environmental plastic pollution : mitigation by microorganism degradation and recycling valorizationJuliana Oliveira, Afonso Belchior, Verônica D. Da Silva, Ana Rotter, Željko Petrovski, Pedro Lúcio Almeida, Nídia D. Lourenço, Susana P. Gaudêncio, 2020, review article Abstract: Plastics are very useful materials and present numerous advantages in the daily life of individuals and society. However, plastics are accumulating in the environment and due to their low biodegradability rate, this problem will persist for centuries. Until recently, oceans were treated as places to dispose of litter, thus the persistent substances are causing serious pollution issues. Plastic and microplastic waste has a negative environmental, social, and economic impact, e.g., causing injury/death to marine organisms and entering the food chain, which leads to health problems. The development of solutions and methods to mitigate marine (micro)plastic pollution is in high demand. There is a knowledge gap in this field, reason why research on this thematic is increasing. Recent studies reported the biodegradation of some types of polymers using different bacteria, biofilm forming bacteria, bacterial consortia, and fungi. Biodegradation is influenced by several factors, from the type of microorganism to the type of polymers, their physicochemical properties, and the environment conditions (e.g., temperature, pH, UV radiation). Currently, green environmentally friendly alternatives to plastic made from renewable feedstocks are starting to enter the market. This review covers the period from 1964 to April 2020 and comprehensively gathers investigation on marine plastic and microplastic pollution, negative consequences of plastic use, and bioplastic production. It lists the most useful methods for plastic degradation and recycling valorization, including degradation mediated by microorganisms (biodegradation) and the methods used to detect and analyze the biodegradation. Published in DiRROS: 06.08.2024; Views: 406; Downloads: 396 Full text (3,02 MB) This document has many files! More... |
1086. Plant molecular responses to potato virus Y : a continuum of outcomes from sensitivity and tolerance to resistanceŠpela Baebler, Anna Coll Rius, Kristina Gruden, 2020, review article Abstract: Potato virus Y (PVY) is the most economically important virus affecting potato production. PVY manipulates the plant cell machinery in order to successfully complete the infecting cycle. On the other side, the plant activates a sophisticated multilayer immune defense response to combat viral infection. The balance between these mechanisms, depending on the plant genotype and environment, results in a specific outcome that can be resistance, sensitivity, or tolerance. In this review, we summarize and compare the current knowledge on molecular events, leading to different phenotypic outcomes in response to PVY and try to link them with the known molecular mechanisms. Keywords: potato virus Y, Potyviridae, potato, Solanum tuberosum, Solanaceae, plant immune signaling, plant hormones, tolerance, susceptibility, resistance Published in DiRROS: 06.08.2024; Views: 549; Downloads: 400 Full text (1,06 MB) This document has many files! More... |
1087. Cold plasma, a new hope in the field of virus inactivationArijana Filipić, Ion Gutiérrez-Aguirre, Gregor Primc, Miran Mozetič, David Dobnik, 2020, review article Abstract: Viruses can infect all cell-based organisms, from bacteria to humans, animals, and plants. They are responsible for numerous cases of hospitalization, many deaths, and widespread crop destruction, all of which result in an enormous medical, economical, and biological burden. Each of the currently used decontamination methods has important drawbacks. Cold plasma (CP) has entered this field as a novel, efficient, and clean solution for virus inactivation. We present recent developments in this promising field of CP-mediated virus inactivation, and describe the applications and mechanisms of the inactivation. This is particularly relevant because viral pandemics, such as COVID-19, highlight the need for alternative virus inactivation methods to replace, complement, or upgrade existing procedures. Published in DiRROS: 06.08.2024; Views: 471; Downloads: 301 Full text (1,92 MB) This document has many files! More... |
1088. The digital MIQE guidelines update : minimum information for publication of quantitative digital PCR experiments for 2020Jim F. Huggett, Alexandra S. Whale, Ward De Spiegelaere, Afif M. Abdel Nour, Young-Kyung Bae, Vladimír Beneš, Dan Burke, Megan Cleveland, Philippe Corbisier, Alison S. Devonshire, Lianhua Dong, Daniela Drandi, Carole A. Foy, Jeremy A. Garson, Hua-Jun He, Jan Hellemans, Mikael Kubista, Antoon Lievens, Mike G. Makrigiorgos, Mojca Milavec, Reinhold D. Mueller, Tania Nolan, Denise M. O'Sullivan, Michael W. Pfaffl, Stefan Rödiger, Erica L. Romsos, Gregory L. Shipley, Valérie Taly, Andreas Untergasser, Carl T. Wittwer, Stephen A. Bustin, Jo Vandesompele, 2020, review article Abstract: Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology. Published in DiRROS: 06.08.2024; Views: 411; Downloads: 315 Full text (1,44 MB) This document has many files! More... |
1089. Epithelial-to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironmentBernarda Majc, Tilen Sever, Miki Zarić, Barbara Breznik, Boris Turk, Tamara Lah Turnšek, 2020, review article Abstract: Epithelial-to-mesenchymal transition (EMT) is an essential molecular and cellular process that is part of normal embryogenesis and wound healing, and also has a ubiquitous role in various types of carcinoma and glioblastoma. EMT is activated and regulated by specific microenvironmental endogenous triggers and a complex network of signalling pathways. These mostly include epigenetic events that affect protein translation-controlling factors and proteases, altogether orchestrated by the switching on and off of oncogenes and tumour-suppressor genes in cancer cells. The hallmark of cancer-linked EMT is that the process is incomplete, as it is opposed by the reverse process of mesenchymal-to-epithelial transition, which results in a hybrid epithelial/mesenchymal phenotype that shows notable cell plasticity. This is a characteristic of cancer stem cells (CSCs), and it is of the utmost importance in their niche microenvironment, where it governs CSC migratory and invasive properties, thereby creating metastatic CSCs. These cells have high resistance to therapeutic treatments, in particular in glioblastoma. Keywords: carcinomas, cancer stem cellsInvasion, proteases, tumour microenvironment Published in DiRROS: 06.08.2024; Views: 425; Downloads: 440 Full text (1,68 MB) This document has many files! More... |
1090. Between source and sea : the role of wastewater treatment in reducing marine microplasticsShirra Freeman, Andy M. Booth, Isam Sabbah, Rachel Tiller, Jan Dierking, Katja Klun, Ana Rotter, Eric Ben David, Jamileh Javidpour, Dror Angel, 2020, review article Abstract: Wastewater treatment plants (WWTPs) are a focal point for the removal of microplastic (MP) particles before they are discharged into aquatic environments. WWTPs are capable of removing substantial quantities of larger MP particles but are inefficient in removing particles with any one dimension of less than 100 μm, with influents and effluents tending to have similar quantities of these smaller particles. As a single WWTP may release >100 billion MP particles annually, collectively WWTPs are significant contributors to the problem of MP pollution of global surface waters. Currently, there are no policies or regulations requiring the removal of MPs during wastewater treatment, but as concern about MP pollution grows, the potential for wastewater technologies to capture particles before they reach surface waters has begun to attract attention. There are promising technologies in various stages of development that may improve the removal of MP particles from wastewater. Better incentivization could speed up the research, development and adoption of innovative practices. This paper describes the current state of knowledge regarding MPs, wastewater and relevant policies that could influence the development and deployment of new technologies within WWTPs. We review existing technologies for capturing very small MP particles and examine new developments that may have the potential to overcome the shortcomings of existing methods. The types of collaborations needed to encourage and incentivize innovation within the wastewater sector are also discussed, specifically strong partnerships among scientific and engineering researchers, industry stakeholders, and policy decision makers. Keywords: wastewater, microplastic, particle removal, innovation, policy, jellyfish mucus Published in DiRROS: 06.08.2024; Views: 445; Downloads: 952 Full text (1,05 MB) This document has many files! More... |