Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (dendritic cells) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Editorial : The role of immune cells in the progression of autoimmune diseases affecting the CNS
Czeslawa Kowal, Jelka Pohar, Flora Zavala, 2022, other scientific articles

Abstract: Insights into the dynamics of immune responses in immune-privileged tissues such as the central nervous system (CNS) are critical to understanding the etiology of autoimmune diseases. Essential in this field is understanding the ways immune cells access and traffic across different types of the blood-brain barrier (BBB), and how the therapeutics alter these processes (see excellent review by Mapunda et al.). The current Research Topic brought into attention a diverse panel of original research papers and two reviews on the immune cells involved in CNS pathophysiology, including dendritic cells (DC), mucosal-associated invariant T (MAIT) cells, neutrophils, and pathogenic Th17 cells, as well as a different aspects of that pathophysiology, including molecular signaling pathways (PP2Cδ) and the role of signaling complexes, known as supramolecular organizing centers (SMOCs), therapeutic interventions (STAT3-specific nanobody, treatment of rheumatoid meningitis with intravenous immunoglobulin - IVIg), possible new forms of autoantigens (neutrophil extracellular traps (NETs) in neuropsychiatric systemic lupus erythematosus - NPSLE), and assessment of correlation between inflammatory markers and severity of autoimmune encephalitis (AE).
Keywords: CNS pathophysiology, dendritic cells, mucosal-associated invariant T cells, STAT3, Th17 cells, PP2Cδ, supramolecular organizing centers (SMOCs), neutrophil extracellular traps, cytology
Published in DiRROS: 06.08.2024; Views: 40; Downloads: 12
.pdf Full text (296,08 KB)
This document has many files! More...

2.
Dendritic cell profiles in the inflamed colonic mucosa predict the responses to tumor necrosis factor alpha inhibitors in inflammatory bowel disease
Nataša Smrekar, David Drobne, Lojze Šmid, Ivan Ferkolj, Borut Štabuc, Alojz Ihan, Andreja Nataša Kopitar, 2018, original scientific article

Abstract: Background Dendritic cells play crucial roles in the control of inflammation and immune tolerance in the gut. We aimed to investigate the effects of tumor necrosis factor alpha (TNFa) inhibitors on intestinal dendritic cells in patients with inflammatory bowel disease and the potential role of intestinal dendritic cells in predicting the response to treatment. Patients and methods Intestinal biopsies were obtained from 30 patients with inflammatory bowel disease before and after treatment with TNFa inhibitors. The proportions of lamina propria dendritic cell phenotypes were analysed using flow cytometry. Disease activity was endoscopically assessed at baseline and after the induction treatment. Results At baseline, the proportion of conventional dendritic cells was higher in the inflamed mucosa (7.8%) compared to the uninflamed mucosa (4.5%) (p = 0.003), and the proportion of CD103+ dendritic cells was lower in the inflamed mucosa (47.1%) versus the uninflamed mucosa (57.3%) (p = 0.03). After 12 weeks of treatment, the proportion of conventional dendritic cells in the inflamed mucosa decreased from 7.8% to 4.5% (p = 0.014), whereas the proportion of CD103+ dendritic cells remained unchanged. Eighteen out of 30 (60%) patients responded to their treatment by week 12. Responders had a significantly higher proportion of conventional dendritic cells (9.16% vs 4.4%, p < 0.01) with higher expression of HLA-DR (median fluorescent intensity [MFI] 12152 vs 8837, p = 0.038) in the inflamed mucosa before treatment compared to nonresponders. Conclusions A proportion of conventional dendritic cells above 7% in the inflamed inflammatory bowel disease mucosa before treatment predicts an endoscopic response to TNFa inhibitors.
Keywords: inflammatory bowel disease, dendritic cells, colon cancer
Published in DiRROS: 02.07.2024; Views: 179; Downloads: 92
.pdf Full text (909,08 KB)
This document has many files! More...

3.
Inhibition of cathepsin X enzyme influences the immune response of THP-1 cells and dendritic cells infected with Helicobacter pylori
Miha Skvarč, David Štubljar, Andreja Nataša Kopitar, Samo Jeverica, Bojan Tepeš, Janko Kos, Alojz Ihan, 2013, original scientific article

Abstract: Background. The immune response to Helicobacter pylori importantly determines the outcome of infection as well as the success of eradication therapy. We demonstrate the role of a cysteine protease cathepsin X in the immune response to H. pylori infection. Materials and methods. We analysed how the inhibition of cathepsin X influenced the immune response in experiments when THP-1 cells or dendritic cells isolated from patients were stimulated with 48 strains of H. pylori isolated from gastric biopsy samples of patients which had problems with the eradication of bacteria. Results. The experiments, performed with the help of a flow cytometer, showed that the expression of Toll-like receptors (TLRs), especially TLR-4 molecules, on the membranes of THP-1 cells or dendritic cells was higher when we stimulated cells with H. pylori together with inhibitor of cathepsin X 2F12 compared to THP-1 cells or dendritic cells stimulated with H. pylori only, and also in comparison with negative control samples. We also demonstrated that when we inhibited the action of cathepsin X in THP-1 cells, the concentrations of pro-inflammatory cytokines were lower than when THP-1 cell were stimulated with H. pylori only. Conclusions. We demonstrated that inhibition of cathepsin X influences the internalization of TLR-2 and TLR-4. TLR-2 and TLR-4 redistribution to intra-cytoplasmic compartments is hampered if cathepsin X is blocked. The beginning of a successful immune response against H. pylori in the case of cathepsin X inhibition is delayed.
Keywords: cathepsin X, macrophage, dendritic cells
Published in DiRROS: 22.03.2024; Views: 262; Downloads: 141
.pdf Full text (564,38 KB)
This document has many files! More...

Search done in 0.11 sec.
Back to top