Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Tamara Lah Turnšek) .

11 - 20 / 50
First pagePrevious page12345Next pageLast page
11.
Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance
Ana Koren, Helena Motaln, Živa Ramšak, Kristina Gruden, Christian Schichor, Tamara Lah Turnšek, 2015, original scientific article

Abstract: Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future.
Keywords: glioblastoma heterogeneity, U87 cells, temozolomide resistance, cellular cross-talk, transcriptomics
Published in DiRROS: 29.07.2024; Views: 156; Downloads: 130
URL Link to full text
This document has many files! More...

12.
Analysis of glioblastoma patients' plasma revealed the presence of microRNAs with a prognostic impact on survival and those of viral origin
Klemen Zupančič, Helena Motaln, Miomir Knežević, Urška Verbovšek, Marjan Koršič, Tamara Lah Turnšek, Primož Rožman, Matjaž Jeras, Matjaž Hren, Kristina Gruden, Andrej Blejec, Matija Veber, Ana Herman, Andrej Porčnik, Vid Podpečan, 2015, original scientific article

Abstract: Background Glioblastoma multiforme (GBM) is among the most aggressive cancers with a poor prognosis in spite of a plethora of established diagnostic and prognostic biomarkers and treatment modalities. Therefore, the current goal is the detection of novel biomarkers, possibly detectable in the blood of GBM patients that may enable an early diagnosis and are potential therapeutic targets, leading to more efficient interventions. Experimental Procedures MicroRNA profiling of 734 human and human-associated viral miRNAs was performed on blood plasma samples from 16 healthy individuals and 16 patients with GBM, using the nCounter miRNA Expression Assay Kits. Results We identified 19 miRNAs with significantly different plasma levels in GBM patients, compared to the healthy individuals group with the difference limited by a factor of 2. Additionally, 11 viral miRNAs were found differentially expressed in plasma of GBM patients and 24 miRNA levels significantly correlated with the patients’ survival. Moreover, the overlap between the group of candidate miRNAs for diagnostic biomarkers and the group of miRNAs associated with survival, consisted of ten miRNAs, showing both diagnostic and prognostic potential. Among them, hsa miR 592 and hsa miR 514a 3p have not been previously described in GBM and represent novel candidates for selective biomarkers. The possible signalling, induced by the revealed miRNAs is discussed, including those of viral origin, and in particular those related to the impaired immune response in the progression of GBM. Conclusion The GBM burden is reflected in the alteration of the plasma miRNAs pattern, including viral miRNAs, representing the potential for future clinical application. Therefore proposed biomarker candidate miRNAs should be validated in a larger study of an independent cohort of patients
Keywords: microRNAs, glioblastoma multiforme, biomarkers, RNA extraction, viral disease diagnosis
Published in DiRROS: 26.07.2024; Views: 159; Downloads: 70
URL Link to full text
This document has many files! More...

13.
Addition of 2-(ethylamino)acetonitrile group to nitroxoline results in significantly improved anti-tumor activity in vitro and in vivo
Ana Mitrović, Izidor Sosič, Špela Kos, Urša Lampreht Tratar, Barbara Breznik, Simona Kranjc Brezar, Bojana Mirković, Stanislav Gobec, Tamara Lah Turnšek, Maja Čemažar, Gregor Serša, Janko Kos, 2017, original scientific article

Abstract: Lysosomal cysteine peptidase cathepsin B, involved in multiple processes associated with tumor progression, is validated as a target for anti-cancer therapy. Nitroxoline, a known antimicrobial agent, is a potent and selective inhibitor of cathepsin B, hence reducing tumor progression in vitro and in vivo. In order to further improve its anti-cancer properties we developed a number of derivatives using structure-based chemical synthesis. Of these, the 7-aminomethylated derivative (compound 17) exhibited significantly improved kinetic properties over nitroxoline, inhibiting cathepsin B endopeptidase activity selectively. In the present study, we have evaluated its anti-cancer properties. It was more effective than nitroxoline in reducing tumor cell invasion and migration, as determined in vitro on two-dimensional cell models and tumor spheroids, under either endpoint or real time conditions. Moreover, it exhibited improved action over nitroxoline in impairing tumor growth in vivo in LPB mouse fibrosarcoma tumors in C57Bl/6 mice. Taken together, the addition of a 2-(ethylamino)acetonitrile group to nitroxoline at position 7 significantly improves its pharmacological characteristics and its potential for use as an anti-cancer drug.
Keywords: nitroxoline derivative, cathepsin B, inhibition, tumor invasion, cell migration
Published in DiRROS: 26.07.2024; Views: 131; Downloads: 116
.pdf Full text (4,30 MB)
This document has many files! More...

14.
Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells
Neža Podergajs, Helena Motaln, Uroš Rajčević, Urška Verbovšek, Marjan Koršič, Nina Obad, Heidi Espedal, Miloš Vittori, Christel Herold-Mende, Hrvoje Miletic, Rolf Bjerkvig, Tamara Lah Turnšek, 2016, original scientific article

Abstract: The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment.
Keywords: biomarker, CD9, glioblastoma stem cells, neural stem cells, tetraspanin
Published in DiRROS: 26.07.2024; Views: 138; Downloads: 98
.pdf Full text (6,28 MB)
This document has many files! More...

15.
Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain
Miloš Vittori, Barbara Breznik, Tajda Gredar, Katja Hrovat, Lilijana Bizjak-Mali, Tamara Lah Turnšek, 2016, original scientific article

Abstract: Background An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. Materials and methods We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. Results By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. Conclusions This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors.
Keywords: brain tumors, tumor microenvironment, animal models, xenotransplantation
Published in DiRROS: 25.07.2024; Views: 122; Downloads: 140
.pdf Full text (1,35 MB)
This document has many files! More...

16.
Improved protective effect of umbilical cord stem cell transplantation on cisplatin-induced kidney injury in mice pretreated with antithymocyte globulin
Željka Večerić-Haler, Andreja Erman, Anton Cerar, Helena Motaln, Katja Kološa, Tamara Lah Turnšek, Snežna Sodin-Šemrl, Katja Lakota, Katjuša Mrak Poljšak, Špela Škrajnar, Simona Kranjc Brezar, Miha Arnol, Martina Perše, 2016, original scientific article

Abstract: Mesenchymal stem cells (MSCs) are recognised as a promising tool to improve renal recovery in experimental models of cisplatin-induced acute kidney injury. However, these preclinical studies were performed on severely immunodeficient animals. Here, we investigated whether human umbilical cord derived MSC treatment could equally ameliorate acute kidney injury induced by cisplatin and prolong survival in mice with a normal immune system and those with a suppressed immune system by polyclonal antithymocyte globulin (ATG). We demonstrated that ATG pretreatment, when followed by MSC transplantation, significantly improved injured renal function parameters, as evidenced by decreased blood urea nitrogen and serum creatinine concentration, as well as improved renal morphology. This tissue restoration was also supported by increased survival of mice. The beneficial effects of ATG were associated with reduced level of inflammatory protein serum amyloid A3 and induced antioxidative expression of superoxide dismutase-1 (SOD-1), glutathione peroxidase (GPx), and hem oxygenase-1 (HO-1). Infused MSCs became localised predominantly in peritubular areas and acted to reduce renal cell death. In conclusion, these results show that ATG diminished in situ inflammation and oxidative stress associated with cisplatin-induced acute kidney injury, the effects that may provide more favourable microenvironment for MSC action, with consequential synergistic improvements in renal injury and animal survival as compared to MSC treatment alone.
Keywords: mesenchymal stem cells, nephrotoxicity
Published in DiRROS: 25.07.2024; Views: 134; Downloads: 130
.pdf Full text (9,54 MB)
This document has many files! More...

17.
Cell proliferation on polyethylene terephthalate treated in plasma created in ▫$SO_2/O_2$▫ mixtures
Nina Recek, Matic Resnik, Rok Zaplotnik, Miran Mozetič, Helena Motaln, Tamara Lah Turnšek, Alenka Vesel, 2017, original scientific article

Abstract: Samples of polymer polyethylene terephthalate were exposed to a weakly ionized gaseous plasma to modify the polymer surface properties for better cell cultivation. The gases used for treatment were sulfur dioxide and oxygen of various partial pressures. Plasma was created by an electrodeless radio frequency discharge at a total pressure of 60 Pa. X-ray photoelectron spectroscopy showed weak functionalization of the samples’ surfaces with the sulfur, with a concentration around 2.5 at %, whereas the oxygen concentration remained at the level of untreated samples, except when the gas mixture with oxygen concentration above 90% was used. Atomic force microscopy revealed highly altered morphology of plasma-treated samples; however, at high oxygen partial pressures this morphology vanished. The samples were then incubated with human umbilical vein endothelial cells. Biological tests to determine endothelialization and possible toxicity of the plasma-treated polyethylene terephthalate samples were performed. Cell metabolic activity (MTT) and in vitro toxic effects of unknown compounds (TOX) were assayed to determine the biocompatibility of the treated substrates. The biocompatibility demonstrated a well-pronounced maximum versus gas composition which correlated well with development of the surface morphology.
Published in DiRROS: 25.07.2024; Views: 95; Downloads: 99
.pdf Full text (10,82 MB)
This document has many files! More...

18.
RECQ1 helicase silencing decreases the tumour growth rate of U87 glioblastoma cell xenografts in zebrafish embryos
Miloš Vittori, Barbara Breznik, Katja Hrovat, Saša Kenig, Tamara Lah Turnšek, 2017, original scientific article

Abstract: RECQ1 helicase has multiple roles in DNA replication, including restoration of the replication fork and DNA repair, and plays an important role in tumour progression. Its expression is highly elevated in glioblastoma as compared to healthy brain tissue. We studied the effects of small hairpin RNA (shRNA)-induced silencing of RECQ1 helicase on the increase in cell number and the invasion of U87 glioblastoma cells. RECQ1 silencing reduced the rate of increase in the number of U87 cells by 30%. This corresponded with a 40% reduction of the percentage of cells in the G2 phase of the cell cycle, and an accumulation of cells in the G1 phase. These effects were confirmed in vivo, in the brain of zebrafish (Danio rerio) embryos, by implanting DsRed-labelled RECQ1 helicase-silenced and control U87 cells. The growth of resulting tumours was quantified by monitoring the increase in xenograft fluorescence intensity during a three-day period with fluorescence microscopy. The reduced rate of tumour growth, by approximately 30% in RECQ1 helicase-silenced cells, was in line with in vitro measurements of the increase in cell number upon RECQ1 helicase silencing. However, RECQ1 helicase silencing did not affect invasive behaviour of U87 cells in the zebrafish brain. This is the first in vivo confirmation that RECQ1 helicase is a promising molecular target in the treatment of glioblastoma.
Keywords: cancer, cell cycle, DNA damage, intravital imaging, RNA interference, theranostics
Published in DiRROS: 25.07.2024; Views: 117; Downloads: 126
.pdf Full text (2,73 MB)
This document has many files! More...

19.
Mesenchymal stem cells differentially affect the invasion of distinct glioblastoma cell lines
Barbara Breznik, Helena Motaln, Miloš Vittori, Ana Rotter, Tamara Lah Turnšek, 2017, original scientific article

Abstract: Glioblastoma multiforme are an aggressive form of brain tumors that are characterized by distinct invasion of single glioblastoma cells, which infiltrate the brain parenchyma. This appears to be stimulated by the communication between cancer and stromal cells. Mesenchymal stem cells (MSCs) are part of the glioblastoma microenvironment, and their ‘cross-talk’ with glioblastoma cells is still poorly understood. Here, we examined the effects of bone marrow-derived MSCs on two different established glioblastoma cell lines U87 and U373. We focused on mutual effects of direct MSC/glioblastoma contact on cellular invasion in three-dimensional invasion assays in vitro and in a zebrafish embryo model in vivo. This is the first demonstration of glioblastoma cell-type-specific responses to MSCs in direct glioblastoma co-cultures, where MSCs inhibited the invasion of U87 cells and enhanced the invasion of U373. Inversely, direct cross-talk between MSCs and both of glioblastoma cell lines enhanced MSC motility. MSC-enhanced invasion of U373 cells was assisted by overexpression of proteases cathepsin B, calpain1, uPA/uPAR, MMP-2, -9 and -14, and increased activities of some of these proteases, as determined by the effects of their selective inhibitors on invasion. In contrast, these proteases had no effect on U87 cell invasion under MSC co-culturing. Finally, we identified differentially expressed genes, in U87 and U373 cells that could explain different response of these cell lines to MSCs. In conclusion, we demonstrated that MSC/glioblastoma cross-talk is different in the two glioblastoma cell phenotypes, which contributes to tumor heterogeneity.
Keywords: glioblastoma multiforme, proteases, mesenchymal stem cells, tumor heterogeneity, zebrafish model
Published in DiRROS: 24.07.2024; Views: 138; Downloads: 106
.pdf Full text (15,25 MB)
This document has many files! More...

20.
Cathepsin K cleavage of SDF-1[alpha] inhibits its chemotactic activity towards glioblastoma stem-like cells
Vashendriya V. V. Hira, Urška Verbovšek, Barbara Breznik, Matic Srdič, Marko Novinec, Hala Kakar, Jill Wormer, Britt van der Swaan, Brigita Lenarčič, Luiz Juliano, Shwetal Mehta, Cornelis J. F. van Noorden, Tamara Lah Turnšek, 2017, original scientific article

Abstract: Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation.
Keywords: glioma stem-like cells, niche, stromal derived factor-[alpha], cathepsin K
Published in DiRROS: 24.07.2024; Views: 122; Downloads: 133
.pdf Full text (1,50 MB)
This document has many files! More...

Search done in 1.72 sec.
Back to top