Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (PD-L1 expression) .

11 - 20 / 28
First pagePrevious page123Next pageLast page
11.
Common gene expression patterns in environmental model organisms exposed to engineered nanomaterials : a meta-analysis
Michael Burkard, Alexander Betz, Kristin Schirmer, Anže Županič, 2020, original scientific article

Abstract: The use of omics is gaining importance in the field of nanoecotoxicology; an increasing number of studies are aiming to investigate the effects and modes of action of engineered nanomaterials (ENMs) in this way. However, a systematic synthesis of the outcome of such studies regarding common responses and toxicity pathways is currently lacking. We developed an R-scripted computational pipeline to perform reanalysis and functional analysis of relevant transcriptomic data sets using a common approach, independent from the ENM type, and across different organisms, including Arabidopsis thaliana, Caenorhabditis elegans, and Danio rerio. Using the pipeline that can semiautomatically process data from different microarray technologies, we were able to determine the most common molecular mechanisms of nanotoxicity across extremely variable data sets. As expected, we found known mechanisms, such as interference with energy generation, oxidative stress, disruption of DNA synthesis, and activation of DNA-repair but also discovered that some less-described molecular responses to ENMs, such as DNA/RNA methylation, protein folding, and interference with neurological functions, are present across the different studies. Results were visualized in radar charts to assess toxicological response patterns allowing the comparison of different organisms and ENM types. This can be helpful to retrieve ENM-related hazard information and thus fill knowledge gaps in a comprehensive way in regard to the molecular underpinnings and mechanistic understanding of nanotoxicity.
Keywords: gene expression, nanomaterials
Published in DiRROS: 19.07.2024; Views: 99; Downloads: 120
.pdf Full text (1,97 MB)
This document has many files! More...

12.
Hepatocellular carcinoma (HepG2/C3A) cell-based 3D model for genotoxicity testing of chemicals
Martina Štampar, Helle Frandsen, Adelina Rogowska-Wrzesinska, Krzysztof Wrzesinski, Metka Filipič, Bojana Žegura, 2021, original scientific article

Abstract: The major weakness of the current in vitro genotoxicity test systems is the inability of the indicator cells to express metabolic enzymes needed for the activation and detoxification of genotoxic compounds, which consequently can lead to misleading results. Thus, there is a significant emphasis on developing hepatic cell models, including advanced in vitro three-dimensional (3D) cell-based systems, which better imitate in vivo cell behaviour and offer more accurate and predictive data for human exposures. In this study, we developed an approach for genotoxicity testing with 21-day old spheroids formed from human hepatocellular carcinoma cells (HepG2/C3A) using the dynamic clinostat bioreactor system (CelVivo BAM/bioreactor) under controlled conditions. The spheroids were exposed to indirect-acting genotoxic compounds, polycyclic aromatic hydrocarbon [PAH; benzo(a) pyrene B(a)P], and heterocyclic aromatic amine [PhIP]) at non-cytotoxic concentrations for 24 and 96 h. The results showed that both environmental pollutants B(a)P and PhIP significantly increased the level of DNA strand breaks assessed by the comet assay. Further, the mRNA level of selected genes encoding metabolic enzymes from phase I and II, and DNA damage responsive genes was determined (qPCR). The 21-day old spheroids showed higher basal expression of genes encoding metabolic enzymes compared to monolayer culture. In spheroids, B(a)P or PhIP induced compound-specific up-regulation of genes implicated in their metabolism, and deregulation of genes implicated in DNA damage and immediate-early response. The study demonstrated that this model utilizing HepG2/C3A spheroids grown under dynamic clinostat conditions represents a very sensitive and promising in vitro model for genotoxicity and environmental studies and can thus significantly contribute to a more reliable assessment of genotoxic activities of pure chemicals, and complex environmental samples even at very low for environmental exposure relevant concentrations.
Keywords: in vitro 3D cell model, 21-day old spheroids, cytotoxic, genotoxic, gene expression
Published in DiRROS: 19.07.2024; Views: 99; Downloads: 148
.pdf Full text (2,08 MB)
This document has many files! More...

13.
Expression of inducible factors reprograms CAR-T cells for enhanced function and safety
Anže Smole, Alexander Benton, Mathilde A. Poussin, Monika A. Eiva, Claudia Mezzanotte, 2022, original scientific article

Abstract: Despite the success of CAR-T cell cancer immunotherapy, challenges in efficacy and safety remain. Investigators have begun to enhance CAR-T cells with the expression of accessory molecules to address these challenges. Current systems rely on constitutive transgene expression or multiple viral vectors, resulting in unregulated response and product heterogeneity. Here, we develop a genetic platform that combines autonomous antigen-induced production of an accessory molecule with constitutive CAR expression in a single lentiviral vector called Uni-Vect. The broad therapeutic application of Uni-Vect is demonstrated in vivo by activation-dependent expression of (1) an immunostimulatory cytokine that improves efficacy, (2) an antibody that ameliorates cytokine-release syndrome, and (3) transcription factors that modulate T cell biology. Uni-Vect is also implemented as a platform to characterize immune receptors. Overall, we demonstrate that Uni-Vect provides a foundation for a more clinically actionable next-generation cellular immunotherapy.
Keywords: CAR-T cells, TCR, inducible, transcription factor, NFAT, single lentiviral expression system, IL-6, IL-12, CRS, armored
Published in DiRROS: 18.07.2024; Views: 165; Downloads: 28
URL Link to file

14.
Physiological and transcriptional responses to saline irrigation of young ‘Tempranillo’ vines grafted onto different rootstocks
Ignacio Buesa, Juan G. Pérez-Pérez, Fernando Visconti, Rebeka Strah, Diego S. Intrigliolo, Luis Bonet, Kristina Gruden, Maruša Pompe Novak, Jose M. de Paz, 2022, original scientific article

Abstract: The use of more salt stress-tolerant vine rootstocks can be a sustainable strategy for adapting traditional grapevine cultivars to future conditions. However, how the new M1 and M4 rootstocks perform against salinity compared to conventional ones, such as the 1103-Paulsen, had not been previously assessed under real field conditions. Therefore, a field trial was carried out in a young ‘Tempranillo’ (Vitis vinifera L.) vineyard grafted onto all three rootstocks under a semi-arid and hot-summer Mediterranean climate. The vines were irrigated with two kinds of water: a non-saline Control with EC of 0.8 dS m–1 and a Saline treatment with 3.5 dS m–1. Then, various physiological parameters were assessed in the scion, and, additionally, gene expression was studied by high throughput sequencing in leaf and berry tissues. Plant water relations evidenced the osmotic effect of water quality, but not that of the rootstock. Accordingly, leaf-level gas exchange rates were also reduced in all three rootstocks, with M1 inducing significantly lower net photosynthesis rates than 1103-Paulsen. Nevertheless, the expression of groups of genes involved in photosynthesis and amino acid metabolism pathways were not significantly and differentially expressed. The irrigation with saline water significantly increased leaf chloride contents in the scion onto the M-rootstocks, but not onto the 1103P. The limitation for leaf Cl– and Na+ accumulation on the scion was conferred by rootstock. Few processes were differentially regulated in the scion in response to the saline treatment, mainly, in the groups of genes involved in the flavonoids and phenylpropanoids metabolic pathways. However, these transcriptomic effects were not fully reflected in grape phenolic ripeness, with M4 being the only one that did not cause reductions in these compounds in response to salinity, and 1103-Paulsen having the highest overall concentrations. These results suggest that all three rootstocks confer short-term salinity tolerance to the scion. The lower transcriptomic changes and the lower accumulation of potentially phytotoxic ions in the scion grafted onto 1103-Paulsen compared to M-rootstocks point to the former being able to maintain this physiological response in the longer term. Further agronomic trials should be conducted to confirm these effects on vine physiology and transcriptomics in mature vineyards.
Keywords: osmotic adjustment, gas exchange, gene expression, water relations, Vitis vinifera L. (grapevine), salinity tolerance
Published in DiRROS: 17.07.2024; Views: 127; Downloads: 103
.pdf Full text (2,32 MB)
This document has many files! More...

15.
The physiological impact of GFLV virus infection on grapevine water status : first observations
Anastazija Jež Krebelj, Maja Cigoj, Marija Stele, Marko Chersicola, Maruša Pompe Novak, Paolo Sivilotti, 2022, original scientific article

Abstract: In a vineyard, grapevines are simultaneously exposed to combinations of several abiotic (drought, extreme temperatures, salinity) and biotic stresses (phytoplasmas, viruses, bacteria). With climate change, the incidences of drought in vine growing regions are increased and the host range of pathogens with increased chances of virulent strain development has expanded. Therefore, we studied the impact of the combination of abiotic (drought) and biotic (Grapevine fanleaf virus (GFLV) infection) stress on physiological and molecular responses on the grapevine of cv. Schioppettino by studying the influence of drought and GFLV infection on plant water status of grapevines, on grapevine xylem vessel occlusion, and on expression patterns of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1), 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), WRKY encoding transcription factor (WRKY54) and RD22-like protein (RD22) genes in grapevines. A complex response of grapevine to the combination of drought and GFLV infection was shown, including priming in the case of grapevine water status, net effect in the case of area of occluded vessels in xylem, and different types of interaction of both stresses in the case of expression of four abscisic acid-related genes. Our results showed that mild (but not severe) water stress can be better sustained by GFLV infection rather than by healthy vines. GFLV proved to improve the resilience of the plants to water stress, which is an important outcome to cope with the challenges of global warming.
Keywords: grapevine, water status, virus infection, GFLV, xylem vessel occlusion, gene expression
Published in DiRROS: 16.07.2024; Views: 102; Downloads: 108
.pdf Full text (4,43 MB)
This document has many files! More...

16.
Lethal and sub-lethal effects and modulation of gene expression induced by T kinase inhibitors in zebrafish (Danio Rerio) embryos
Tina Eleršek, Matjaž Novak, Mateja Mlinar, Igor Virant, Nika Bahor, Karin Leben, Bojana Žegura, Metka Filipič, 2022, original scientific article

Abstract: Tyrosine kinase inhibitors (TKIs) are designed for targeted cancer therapy. The consumption of these drugs during the last 20 years has been constantly rising. In the zebrafish (Danio rerio) embryo toxicity test, we assessed the toxicity of six TKIs: imatinib mesylate, erlotinib, nilotinib, dasatinib, sorafenib and regorafenib. Imatinib mesylate and dasatinib induced lethal effects, while regorafenib, sorfenib and dasatinib caused a significant increase of sub-lethal effects, predominantly oedema, no blood circulation and formation of blood aggregates. The analyses of the changes in the expression of selected genes associated with the hormone system after the exposure to imatinib mesylate, dasatinib and regorafenib demonstrated that all three tested TKIs deregulated the expression of oestrogen receptor esr1, cytochrome P450 aromatase (cypa19b) and hydroxysteroid-dehydrogenase (hsd3b), regorafenib, and also thyroglobulin (tg). The expression of genes involved in the DNA damage response (gadd45 and mcm6) and apoptosis (bcl2) was deregulated only by exposure to regorafenib. The data indicate that common mechanisms, namely antiangiogenic activity and interference with steroidogenesis are involved in the TKI induced sub-lethal effects and potential hormone disrupting activity, respectively. The residues of TKIs may represent an environmental hazard; therefore, further ecotoxicological studies focusing also on the effects of their mixtures are warranted.
Keywords: aquatic toxicity, tyrosine kinase inhibitors, zebrafish embryo toxicity test, gene expression, environmental hazard
Published in DiRROS: 16.07.2024; Views: 148; Downloads: 108
.pdf Full text (9,13 MB)
This document has many files! More...

17.
18.
PD-L1 expression in squamous-cell carcinoma and adenocarcinoma of the lung
Urška Janžič, Izidor Kern, Andrej Janžič, Luka Čavka, Tanja Čufer, 2017, original scientific article

Abstract: With introduction of immunotherapy (IT) into the treatment of advanced non-small-cell lung cancer (NSCLC), a need for predictive biomarker became apparent. Programmed death ligand 1 (PD-L1) protein expression is most widely explored predictive marker for response to IT. We assessed PD-L1 expression in tumor cells (TC) and immune cells (IC) of squamous-cell carcinoma (SCC) and adenocarcinoma (AC) patients. We obtained 54 surgically resected tumor specimens and assessed PD-L1 expression by immunohistochemistry after staining them with antibody SP142 (Ventana, USA). Clinicopathological characteristics were acquired from the hospital registry database. Results were analyzed according to cut-off values of % 5% and % 10% of PD-L1 expression on either TC or IC. 29 (54%) samples were AC and 25 (46%) were SCC. PD-L1 expression was significantly higher in TC of SCC compared to AC at both cut-off values (52% vs. 17%, p = 0.016 and 52% vs. 14%, p = 0.007, respectively) no difference in PD-L1 expression in IC of SCC and AC was found. In AC alone, PD-L1 expression was significantly higher in IC compared to TC at both cut-off values (72% vs. 17%, p < 0.001 and 41% vs. 14%, p = 0.008, respectively), while no significant difference between IC and TC PD-L1 expression was revealed in SCC. Our results suggest a significantly higher PD-L1 expression in TC of SCC compared to AC, regardless of the cut-off value. PD-L1 expression in IC is high in both histological subtypes of NSCLC, and adds significantly to the overall positivity of AC but not SCC.
Keywords: lung cancer, squamous-cell lung cancer, adenocarcinoma, tumor cells, immune cells, PD-L1 expression
Published in DiRROS: 31.05.2024; Views: 278; Downloads: 209
.pdf Full text (644,78 KB)
This document has many files! More...

19.
Recombinant human erythropoietin alters gene expression and stimulates proliferation of MCF-7 breast cancer cells
Nina Trošt, Tina Stepišnik, Sabina Berne, Anja Pucer Janež, Toni Petan, Radovan Komel, Nataša Debeljak, 2013, published scientific conference contribution

Abstract: Background. Functional erythropoietin (EPO) signaling is not specific only to erythroid lineages and has been confirmed in several solid tumors, including breast. Three different isoforms of erythropoietin receptor (EPOR) have been reported, the soluble (EPOR-S) and truncated (EPOR-T) forms acting antagonistically to the functional EPOR. In this study, we investigated the effect of human recombinant erythropoietin (rHuEPO) on cell proliferation, early gene response and the expression of EPOR isoforms in the MCF-7 breast cancer cell line.Materials and methods. The MCF-7 cells were cultured with or without rHuEPO for 72 h or 10 weeks and assessed for their growth characteristics, expression of early response genes and different EPOR isoforms. The expression profile of EPOR and EPOR-T was determined in a range of breast cancer cell lines and compared with their invasive properties.Results. MCF-7 cell proliferation after rHuEPO treatment was dependent on the time of treatment and the concentration used. High rHuEPO concentrations (40 U/ml) stimulated cell proliferation independently of a preceding long-term exposure of MCF-7 cells to rHuEPO, while lower concentrations increased MCF-7 proliferation only after 10 weeks of treatment. Gene expression analysis showed activation of EGR1 and FOS, confirming the functionality of EPOR. rHuEPO treatment also slightly increased the expression of the functional EPOR isoform, which, however, persisted throughout the 10 weeks of treatment. The expression levels of EPOR-T were not influenced. There were no correlations between EPOR expression and the invasiveness of MCF-7, MDA-MB-231, Hs578T, Hs578Bst, SKBR3, T-47D and MCF-10A cell lines.Conclusions. rHuEPO modulates MCF-7 cell proliferation in time- and concentration-dependent manner. We confirmed EGR1, FOS and EPOR as transcription targets of the EPO-EPOR signaling loop, but could not correlate the expression of different EPOR isoforms with the invasiveness of breast cancer cell lines.
Keywords: breast cancer, erythropoietin, gene expression
Published in DiRROS: 22.03.2024; Views: 461; Downloads: 157
.pdf Full text (850,15 KB)
This document has many files! More...

20.
The prognostic and predictive value of human gastrointestinal microbiome and exosomal mRNA expression of PD-L1 and IFNγ for immune checkpoint inhibitors response in metastatic melanoma patients : protocol trial
Ana Erman, Marija Ignjatović, Katja Leskovšek, Simona Miceska, Urša Lampreht Tratar, Maša Omerzel, Veronika Kloboves-Prevodnik, Maja Čemažar, Lidija Kandolf Sekulović, Gorazd Avguštin, Janja Ocvirk, Tanja Mesti, 2023, original scientific article

Abstract: Background: Immunotherapy has been successful in treating advanced melanoma, but a large proportion of patients do not respond to the treatment with immune checkpoint inhibitors (ICIs). Preclinical and small cohort studies suggest gastrointestinal microbiome composition and exosomal mRNA expression of PD-L1 and IFNγ from the primary tumor, stool and body fluids as potential biomarkers for response. Methods: Patients treated with immune checkpoint inhibitors as a first line treatment for metastatic melanoma are recruted to this prospective study. Stool samples are submitted before the start of treatment, at the 12th (+/−2) week and 28th (+/−2) week, and at the occurrence of event (suspected disease progression/hyperprogression, immune-related adverse event (irAE), deterioration). Peripheral venous blood samples are taken additionally at the same time points for cytologic and molecular tests. Histological material from the tumor tissue is obtained before the start of immunotherapy treatment. Primary objectives are to determine whether the human gastrointestinal microbiome (bacterial and viral) and the exosomal mRNA expression of PD-L1 and IFNγ and its dynamics predicts the response to treatment with PD-1 and CTLA-4 inhibitors and its association with the occurrence of irAE. The response is evaluated radiologically with imaging methods in accordance with the irRECIST criteria. Conclusions: This is the first study to combine and investigate multiple potential predictive and prognostic biomarkers and their dynamics in first line ICI in metastatic melanoma patients.
Keywords: gastrointestinal microbiome, mRNA expression of PD-L1 and IFNγ, immune checkpoint inhibitors, metastatic melanoma
Published in DiRROS: 21.03.2024; Views: 291; Downloads: 163
.pdf Full text (642,09 KB)
This document has many files! More...

Search done in 0.2 sec.
Back to top