Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Novak Matjaž) .

1 - 6 / 6
First pagePrevious page1Next pageLast page
1.
Hazard characterization of Alternaria toxins to identify data gaps and improve risk assessment for human health
Henriqueta Louro, Ariane Vettorazzi, Adela López de Cerain, Bojana Žegura, Matjaž Novak, 2024, review article

Abstract: Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.
Keywords: mycotoxin, exposure routes, genotoxicity, endocrine disruption, immunosuppression, biotransformation, toxicokinetics, tenuazonic acid, alternariol, altenuene, tentoxin, altertoxin
Published in DiRROS: 07.08.2024; Views: 37; Downloads: 53
.pdf Full text (3,22 MB)
This document has many files! More...

2.
Double strand breaks and cell-cycle arrest induced by the cyanobacterial toxin cylindrospermopsin in HepG2 cells
Alja Štern, Metka Filipič, Matjaž Novak, Bojana Žegura, 2013, original scientific article

Abstract: The newly emerging cyanobacterial cytotoxin cylindrospermopsin (CYN) is increasingly found in surface freshwaters, worldwide. It poses a potential threat to humans after chronic exposure as it was shown to be genotoxic in a range of test systems and is potentially carcinogenic. However, the mechanisms of CYN toxicity and genotoxicity are not well understood. In the present study CYN induced formation of DNA double strand breaks (DSBs), after prolonged exposure (72 h), in human hepatoma cells, HepG2. CYN (0.1–0.5 µg/mL, 24–96 h) induced morphological changes and reduced cell viability in a dose and time dependent manner. No significant increase in lactate dehydrogenase (LDH) leakage could be observed after CYN exposure, indicating that the reduction in cell number was due to decreased cell proliferation and not due to cytotoxicity. This was confirmed by imunocytochemical analysis of the cell-proliferation marker Ki67. Analysis of the cell-cycle using flow-cytometry showed that CYN has an impact on the cell cycle, indicating G0/G1 arrest after 24 h and S-phase arrest after longer exposure (72 and 96 h). Our results provide new evidence that CYN is a direct acting genotoxin, causing DSBs, and these facts need to be considered in the human health risk assessment.
Keywords: cylindrospermopsin, cell-cycle, cell-proliferation, double-strand breaks, HepG2 cells
Published in DiRROS: 02.08.2024; Views: 107; Downloads: 82
.pdf Full text (689,29 KB)
This document has many files! More...

3.
Minimum Information for Reporting on the Comet Assay (MIRCA) : recommendations for describing comet assay procedures and results
Peter Møller, Amaya Azqueta, Elisa Boutet-Robinet, Gudrun Koppen, Stefano Bonassi, Mirta Milić, Goran Gajski, Solange Costa, Bojana Žegura, Matjaž Novak, 2020, original scientific article

Abstract: The comet assay is a widely used test for the detection of DNA damage and repair activity. However, there are interlaboratory differences in reported levels of baseline and induced damage in the same experimental systems. These differences may be attributed to protocol differences, although it is difficult to identify the relevant conditions because detailed comet assay procedures are not always published. Here, we present a Consensus Statement for the Minimum Information for Reporting Comet Assay (MIRCA) providing recommendations for describing comet assay conditions and results. These recommendations differentiate between ‘desirable’ and ‘essential’ information: ‘essential’ information refers to the precise details that are necessary to assess the quality of the experimental work, whereas ‘desirable’ information relates to technical issues that might be encountered when repeating the experiments. Adherence to MIRCA recommendations should ensure that comet assay results can be easily interpreted and independently verified by other researchers.
Published in DiRROS: 22.07.2024; Views: 109; Downloads: 62
.pdf Full text (943,87 KB)
This document has many files! More...

4.
Lethal and sub-lethal effects and modulation of gene expression induced by T kinase inhibitors in zebrafish (Danio Rerio) embryos
Tina Eleršek, Matjaž Novak, Mateja Mlinar, Igor Virant, Nika Bahor, Karin Leben, Bojana Žegura, Metka Filipič, 2022, original scientific article

Abstract: Tyrosine kinase inhibitors (TKIs) are designed for targeted cancer therapy. The consumption of these drugs during the last 20 years has been constantly rising. In the zebrafish (Danio rerio) embryo toxicity test, we assessed the toxicity of six TKIs: imatinib mesylate, erlotinib, nilotinib, dasatinib, sorafenib and regorafenib. Imatinib mesylate and dasatinib induced lethal effects, while regorafenib, sorfenib and dasatinib caused a significant increase of sub-lethal effects, predominantly oedema, no blood circulation and formation of blood aggregates. The analyses of the changes in the expression of selected genes associated with the hormone system after the exposure to imatinib mesylate, dasatinib and regorafenib demonstrated that all three tested TKIs deregulated the expression of oestrogen receptor esr1, cytochrome P450 aromatase (cypa19b) and hydroxysteroid-dehydrogenase (hsd3b), regorafenib, and also thyroglobulin (tg). The expression of genes involved in the DNA damage response (gadd45 and mcm6) and apoptosis (bcl2) was deregulated only by exposure to regorafenib. The data indicate that common mechanisms, namely antiangiogenic activity and interference with steroidogenesis are involved in the TKI induced sub-lethal effects and potential hormone disrupting activity, respectively. The residues of TKIs may represent an environmental hazard; therefore, further ecotoxicological studies focusing also on the effects of their mixtures are warranted.
Keywords: aquatic toxicity, tyrosine kinase inhibitors, zebrafish embryo toxicity test, gene expression, environmental hazard
Published in DiRROS: 16.07.2024; Views: 120; Downloads: 90
.pdf Full text (9,13 MB)
This document has many files! More...

5.
6.
Exploring the safety of cannabidiol (CBD) : a comprehensive in vitro evaluation of the genotoxic and mutagenic potential of a CBD isolate and extract from Cannabis sativa L
Alja Štern, Matjaž Novak, Katja Kološa, Jurij Trontelj, Sonja Žabkar, Tjaša Šentjurc, Metka Filipič, Bojana Žegura, 2024, original scientific article

Abstract: Cannabidiol (CBD), a naturally occurring cyclic terpenoid found in Cannabis sativa L., is renowned for its diverse pharmacological benefits. Marketed as a remedy for various health issues, CBD products are utilized by patients as a supplementary therapy or post-treatment failure, as well as by healthy individuals seeking promised advantages. Despite its widespread use, information regarding potential adverse effects, especially genotoxic properties, is limited. The present study is focused on the mutagenic and genotoxic activity of a CBD isolate (99.4 % CBD content) and CBD-rich Cannabis sativa L extract (63.6 % CBD content) in vitro. Both CBD samples were non-mutagenic, as determined by the AMES test (OECD 471) but exhibited cytotoxicity for HepG2 cells (~IC50 (4 h) 26 µg/ml, ~IC50 (24 h) 6–8 µg/ml, MTT assay). Noncytotoxic concentrations induced upregulation of genes encoding metabolic enzymes involved in CBD metabolism, and CBD oxidative as well as glucuronide metabolites were found in cell culture media, demonstrating the ability of HepG2 cells to metabolize CBD. In this study, the CBD samples were found non-genotoxic. No DNA damage was observed with the comet assay, and no influence on genomic instability was observed with the cytokinesis block micronucleus and the γH2AX and p-H3 assays. Furthermore, no changes in the expression of genes involved in genotoxic stress response were detected in the toxicogenomic analysis, after 4 and 24 h of exposure. Our comprehensive study contributes valuable insights into CBD’s safety profile, paving the way for further exploration of CBD’s therapeutic applications and potential adverse effects.
Keywords: cannabidiol, CBD, metabolism, cytotoxicity, genotoxicity, mutagenicity
Published in DiRROS: 09.07.2024; Views: 121; Downloads: 120
.pdf Full text (4,31 MB)
This document has many files! More...

Search done in 0.42 sec.
Back to top