Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Mojca Juteršek) .

1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Transcriptional deregulation of stress-growth balance in Nicotiana benthamiana biofactories producing insect sex pheromones
Mojca Juteršek, Marko Petek, Živa Ramšak, Elena Moreno Gimenéz, Silvia Gianoglio, Rubèn Mateos Fernández, Diego Orzaez, Kristina Gruden, Špela Baebler, 2022, original scientific article

Abstract: Plant biofactories are a promising platform for sustainable production of high-value compounds, among which are insect sex pheromones, a green alternative to conventional insecticides in agriculture. Recently, we have constructed transgenic Nicotiana benthamiana plants (“Sexy Plants”, SxP) that successfully produce a blend of moth (Lepidoptera) sex pheromone compounds (Z)-11-hexadecen-1-ol and (Z)-11-hexadecenyl acetate. However, efficient biosynthesis of sex pheromones resulted in growth and developmental penalty, diminishing the potential for commercial use of SxP in biomanufacturing. To gain insight into the underlying molecular responses, we analysed the whole-genome transcriptome and evaluated it in relation to growth and pheromone production in low- and high-producing transgenic plants of v1.0 and v1.2 SxP lines. In our study, high-producing SxPv1.2 plants accumulated the highest amounts of pheromones but still maintained better growth compared to v1.0 high producers. For an in-depth biological interpretation of the transcriptomic data, we have prepared a comprehensive functional N. benthamiana genome annotation as well as gene translations to Arabidopsis thaliana, enabling functional information transfer by using Arabidopsis knowledge networks. Differential gene expression analysis, contrasting pheromone producers to wild-type plants, revealed that while only a few genes were differentially regulated in low-producing plants, high-producing plants exhibited vast transcriptional reprogramming. They showed signs of stress-like response, manifested as downregulation of photosynthesis-related genes and significant differences in expression of hormonal signalling and secondary metabolism-related genes, the latter presumably leading to previously reported volatilome changes. Further network analyses confirmed stress-like response with activation of jasmonic acid and downregulation of gibberellic acid signalling, illuminating the possibility that the observed growth penalty was not solely a consequence of a higher metabolic burden imposed upon constitutive expression of a heterologous biosynthetic pathway, but rather the result of signalling pathway perturbation. Our work presents an example of comprehensive transcriptomic analyses of disadvantageous stress signalling in N. benthamiana biofactory that could be applied to other bioproduction systems.
Keywords: transcriptomics, plant biotechnology, jasmonic acid, growthstress tradeoffs, network analysis, growth penalty, insect sex pheromone
Published in DiRROS: 17.07.2024; Views: 2; Downloads: 2
.pdf Full text (7,68 MB)
This document has many files! More...

2.
Evidence-based unification of potato gene models with the UniTato collaborative genome browser
Maja Zagorščak, Jan Zrimec, Carissa Bleker, Nadja Francesca Nolte, Mojca Juteršek, Živa Ramšak, Kristina Gruden, Marko Petek, 2024, original scientific article

Abstract: Potato (Solanum tuberosum) is the most popular tuber crop and a model organism. A variety of gene models for potato exist, and despite frequent updates, they are not unified. This hinders the comparison of gene models across versions, limits the ability to reuse experimental data without significant re-analysis, and leads to missing or wrongly annotated genes. Here, we unify the recent potato double monoploid v4 and v6 gene models by developing an automated merging protocol, resulting in a Unified poTato genome model (UniTato). We subsequently established an Apollo genome browser (unitato.nib.si) that enables public access to UniTato and further community-based curation. We demonstrate how the UniTato resource can help resolve problems with missing or misplaced genes and can be used to update or consolidate a wider set of gene models or genome information. The automated protocol, genome annotation files, and a comprehensive translation table are provided at github.com/NIB-SI/unitato.
Keywords: bioinformatics analysis, plant genome annotation, gene model annotations, Phureja group, GFF files, poTato genome model, UniTato
Published in DiRROS: 11.06.2024; Views: 115; Downloads: 98
.pdf Full text (2,48 MB)
This document has many files! More...

3.
Transcriptome-informed identification and characterization of Planococcus citri cis- and trans-isoprenyl diphosphate synthase genes
Mojca Juteršek, Iryna Gerasymenko, Marko Petek, Kristina Gruden, Špela Baebler, 2024, original scientific article

Abstract: Insect physiology and reproduction depend on several terpenoid compounds, whose biosynthesis is mainly unknown. One enigmatic group of insect monoterpenoids are mealybug sex pheromones, presumably resulting from the irregular coupling activity of unidentified isoprenyl diphosphate synthases (IDSs). Here, we performed a comprehensive search for IDS coding sequences of the pest mealybug Planococcus citri. We queried the available genomic and newly generated short- and long-read P. citri transcriptomic data and identified 18 putative IDS genes, whose phylogenetic analysis indicates several gene family expansion events. In vitro testing confirmed regular short-chain coupling activity with five gene products. With the candidate with highest IDS activity, we also detected low amounts of irregular coupling products, and determined amino acid residues important for chain-length preference and irregular coupling activity. This work therefore provides an important foundation for deciphering terpenoid biosynthesis in mealybugs, including the sex pheromone biosynthesis in P. citri.
Keywords: insect pheromones, isoprenyl diphosphate synthase, monoterpenes, phylogenetic analysis
Published in DiRROS: 29.03.2024; Views: 319; Downloads: 145
.pdf Full text (2,04 MB)
This document has many files! More...

4.
Chloroplast redox state changes mark cell-to-cell signaling in the hypersensitive response
Tjaša Lukan, Anže Županič, Tjaša Mahkovec Povalej, Jacob O. Brunkard, Mirjam Kmetič, Mojca Juteršek, Špela Baebler, Kristina Gruden, 2023, original scientific article

Abstract: Bisphenol A (BPA) is one of the most commonly used substances in the manufacture ofvarious everyday products. Growing concerns about its hazardous properties, including endocrinedisruption and genotoxicity, have led to its gradual replacement by presumably safer analogues inmanufacturing plastics. The widespread use of BPA and, more recently, its analogues has increasedtheir residues in the environment. However, our knowledge of their toxicological profiles is limitedand their combined effects are unknown. In the present study, we investigated the toxic effectscaused by single bisphenols and by the combined exposure of BPA and its two analogues, BPAP andBPC, after short (24-h) and prolonged (96-h) exposure in HepG2 spheroids. The results showed thatBPA did not reduce cell viability in HepG2 spheroids after 24-h exposure. In contrast, BPAP andBPC affected cell viability in HepG2 spheroids. Both binary mixtures (BPA/BPAP and BPA/BPC)decreased cell viability in a dose-dependent manner, but the significant difference was only observedfor the combination of BPA/BPC (both at 40μM). After 96-h exposure, none of the BPs studiedaffected cell viability in HepG2 spheroids. Only the combination of BPA/BPAP decreased cellviability in a dose-dependent manner that was significant for the combination of 4μM BPA and 4μMBPAP. None of the BPs and their binary mixtures studied affected the surface area and growth ofspheroids as measured by planimetry. In addition, all BPs and their binary mixtures studied triggeredoxidative stress, as measured by the production of reactive oxygen species and malondialdehyde,at both exposure times. Overall, the results suggest that it is important to study the effects of BPsas single compounds. It is even more important to study the effects of combined exposures, as thecombined effects may differ from those induced by single compounds.
Keywords: chloroplast redox state, hypersensitive response (HR)-conferred resistance, immune signaling, live cell imaging, Solanum tuberosum (potato), spatiotemporal analysis, stromules, virus resistance
Published in DiRROS: 13.04.2023; Views: 535; Downloads: 261
.pdf Full text (8,67 MB)
This document has many files! More...

Search done in 1.85 sec.
Back to top