Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Koprivnikar Krajnc Miha) .

1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Localization patterns of cathepsins K and X and their predictive value in glioblastoma
Barbara Breznik, Clara Limbaeck Stanic, Andrej Porčnik, Andrej Blejec, Miha Koprivnikar Krajnc, Roman Bošnjak, Janko Kos, Cornelis J. F. van Noorden, Tamara Lah Turnšek, 2018, original scientific article

Abstract: Background Glioblastoma is a highly aggressive central nervous system neoplasm characterized by extensive infiltration of malignant cells into brain parenchyma, thus preventing complete tumor eradication. Cysteine cathepsins B, S, L and K are involved in cancer progression and are overexpressed in glioblastoma. We report here for the first time that cathepsin X mRNA and protein are also abundantly present in malignant glioma. Materials and methods Gene expression of cathepsins K and X was analyzed using publically-available tran-scriptomic datasets and correlated with glioma grade and glioblastoma subtype. Kaplan-Maier survival analysis was performed to evaluate the predictive value of cathepsin K and X mRNA expression. Cathepsin protein expression was localized and semi-quantified in tumor tissues by immunohistochemistry. Results Highest gene expression of cathepsins K and X was found in glioblastoma, in particular in the mesenchymal subtype. Overall, high mRNA expression of cathepsin X, but not that of cathepsin K, correlated with poor patients’ survival. Cathepsin K and X proteins were abundantly and heterogeneously expressed in glioblastoma tissue. Immuno-labeling of cathepsins K and X was observed in areas of CD133-positive glioblastoma stem cells, localized around arterioles in their niches that also expressed SDF-1α and CD68. mRNA levels of both cathepsins K and X correlated with mRNA levels of markers of glioblastoma stem cells and their niches. Conclusions The presence of both cathepsins in glioblastoma stem cell niche regions indicates their possible role in regulation of glioblastoma stem cell homing in their niches. The clinical relevance of this data needs to be elaborated in further prospective studies.
Keywords: cathepsins, glioblastoma, immunohistochemistry, patient survival, cancer stem cell niches
Published in DiRROS: 24.07.2024; Views: 29; Downloads: 11
.pdf Full text (1,91 MB)
This document has many files! More...

2.
CCR5-mediated signaling is involved in invasion of glioblastoma cells in its microenvironment
Metka Novak, Miha Koprivnikar Krajnc, Barbara Hrastar, Barbara Breznik, Bernarda Majc, Mateja Mlinar, Ana Rotter, Andrej Porčnik, Jernej Mlakar, Katja Stare, Richard G. Pestell, Tamara Lah Turnšek, 2020, original scientific article

Abstract: Abstract The chemokine CCL5/RANTES is a versatile inflammatory mediator, which interacts with the receptor CCR5, promoting cancer cell interactions within the tumor microenvironment. Glioblastoma is a highly invasive tumor, in which CCL5 expression correlates with shorter patient survival. Using immunohistochemistry, we identified CCL5 and CCR5 in a series of glioblastoma samples and cells, including glioblastoma stem cells. CCL5 and CCR5 gene expression were significantly higher in a cohort of 38 glioblastoma samples, compared to low-grade glioma and non-cancerous tissues. The in vitro invasion of patients-derived primary glioblastoma cells and glioblastoma stem cells was dependent on CCL5-induced CCR5 signaling and is strongly inhibited by the small molecule CCR5 antagonist maraviroc. Invasion of these cells, which was enhanced when co-cultured with mesenchymal stem cells (MSCs), was inhibited by maraviroc, suggesting that MSCs release CCR5 ligands. In support of this model, we detected CCL5 and CCR5 in MSC monocultures and glioblastoma-associated MSC in tissue sections. We also found CCR5 expressing macrophages were in close proximity to glioblastoma cells. In conclusion, autocrine and paracrine cross-talk in glioblastoma and, in particular, glioblastoma stem cells with its stromal microenvironment, involves CCR5 and CCL5, contributing to glioblastoma invasion, suggesting the CCL5/CCR5 axis as a potential therapeutic target that can be targeted with repositioned drug maraviroc.
Keywords: CCL5, CCR5, chemokines, glioblastoma, invasion, maraviroc, mesenchymal stem cells
Published in DiRROS: 22.07.2024; Views: 48; Downloads: 9
URL Link to file

3.
4.
Search done in 3.11 sec.
Back to top