Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Katarina Bačnik) .

1 - 10 / 11
First pagePrevious page12Next pageLast page
1.
In-depth comparison of adeno-associated virus containing fractions after CsCl ultracentrifugation gradient separation
Mojca Janc, Kaja Zevnik, Ana Dolinar, Tjaša Jakomin, Maja Štalekar, Katarina Bačnik, Denis Kutnjak, Magda Tušek-Žnidarič, Lorena Zentilin, Dmitri G. Fedorov, David Dobnik, 2024, original scientific article

Abstract: Recombinant adeno-associated viruses (rAAVs) play a pivotal role in the treatment of genetic diseases. However, current production and purification processes yield AAV-based preparations that often contain unwanted empty, partially filled or damaged viral particles and impurities, including residual host cell DNA and proteins, plasmid DNA, and viral aggregates. To precisely understand the composition of AAV preparations, we systematically compared four different single-stranded AAV (ssAAV) and self-complementary (scAAV) fractions extracted from the CsCl ultracentrifugation gradient using established methods (transduction efficiency, analytical ultracentrifugation (AUC), quantitative and digital droplet PCR (qPCR and ddPCR), transmission electron microscopy (TEM) and enzyme-linked immunosorbent assay (ELISA)) alongside newer techniques (multiplex ddPCR, multi-angle light-scattering coupled to size-exclusion chromatography (SEC-MALS), multi-angle dynamic light scattering (MADLS), and high-throughput sequencing (HTS)). Suboptimal particle separation within the fractions resulted in unexpectedly similar infectivity levels. No single technique could simultaneously provide comprehensive insights in the presence of both bioactive particles and contaminants. Notably, multiplex ddPCR revealed distinct vector genome fragmentation patterns, differing between ssAAV and scAAV. This highlights the urgent need for innovative analytical and production approaches to optimize AAV vector production and enhance therapeutic outcomes.
Keywords: recombinant adeno-associated viruses (rAAVs), CsCl ultracentrifugation gradient, analytical methods, digital droplet PCR (ddPCR), transmission electron microscopy (TEM), analytical ultracentrifugation (AUC), size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS), Illumina sequencing, virology
Published in DiRROS: 07.08.2024; Views: 90; Downloads: 65
.pdf Full text (8,47 MB)
This document has many files! More...

2.
Retrospective survey of Dickeya fangzhongdai using a novel validated real-time PCR assay
Špela Alič, Katarina Bačnik, Tanja Dreo, 2024, original scientific article

Abstract: Dickeya fangzhongdai, an aggressive plant pathogen, causes symptoms on a variety of crops and ornamental plants including bleeding canker of Asian pear trees. Historical findings stress the need for a specific detection tool for D. fangzhongdai to prevent overlooking the pathogen or assigning it to general Dickeya spp. Therefore, a qualitative real-time PCR for specific detection of D. fangzhongdai has been developed and validated. The developed assay shows selectivity of 100%, diagnostic sensitivity of 76% and limit of detection with 95% confidence interval in plant matrices ranging from 311 to 2,275 cells/mL of plant extracts. The assay was successfully used in a retrospective survey of selected host plants of relevance to Europe and environmental niches relevant to D. fangzhongdai. Samples of potato tubers and plants, plants from the Malinae subtribe (apple, pear, quince, and Asian pear tree) and fresh surface water from Slovenia were analyzed. D. fangzhongdai was not detected in any plant samples, however, 12% of surface water samples were found to be positive.
Keywords: molecular testing, diagnostics, plant pathogen, real-time PCR, Dickeya, survey, water
Published in DiRROS: 07.08.2024; Views: 108; Downloads: 91
.pdf Full text (1,94 MB)
This document has many files! More...

3.
Viromics and infectivity analysis reveal the release of infective plant viruses from wastewater into the environment
Katarina Bačnik, Denis Kutnjak, Anja Pecman, Nataša Mehle, Magda Tušek-Žnidarič, Ion Gutiérrez-Aguirre, Maja Ravnikar, 2020, original scientific article

Abstract: Viruses represent one of the most important threats to agriculture. Several viral families include highly stable pathogens, which remain infective and can be transported long distances in water. The diversity of plant viruses in wastewater remains understudied; however, their potential impact is increasing with the increased irrigation usage of reclaimed wastewater. To determine the abundance, diversity and biological relevance of plant viruses in wastewater influents and effluents we applied an optimized virus concentration method followed by high-throughput sequencing and infectivity assays. We detected representatives of 47 plant virus species, including emerging crop threats. We also demonstrated infectivity for pathogenic and economically relevant plant viruses from the genus Tobamovirus (family Virgaviridae), which remain infective even after conventional wastewater treatment. These results demonstrate the potential of metagenomics to capture the diversity of plant viruses circulating in the environment and expose the potential risk of the uncontrolled use of reclaimed water for irrigation.
Keywords: wastewater, virome, high-throughput sequencing, plant viruses, tobamoviruses, infectivity
Published in DiRROS: 19.07.2024; Views: 249; Downloads: 146
.pdf Full text (2,57 MB)
This document has many files! More...

4.
Virome analysis of signal crayfish (Pacifastacus leniusculus) along its invasion range reveals diverse and divergent RNA viruses
Katarina Bačnik, Denis Kutnjak, Silvija Černi, Ana Bielen, Sandra Hudina, 2021, original scientific article

Abstract: Crayfish are a keystone species of freshwater ecosystems and a successful invasive species. However, their pathogens, including viruses, remain understudied. The aim of this study was to analyze the virome of the invasive signal crayfish (Pacifastacus leniusculus) and to elucidate the potential differences in viral composition and abundance along its invasion range in the Korana River, Croatia. By the high-throughput sequencing of ribosomal RNA, depleted total RNA isolated from the crayfish hepatopancreas, and subsequent sequence data analysis, we identified novel and divergent RNA viruses, including signal crayfish-associated reo-like, hepe-like, toti-like, and picorna-like viruses, phylogenetically related to viruses previously associated with crustacean hosts. The patterns of reads abundance and calculated nucleotide diversities of the detected viral sequences varied along the invasion range. This could indicate the possible influence of different factors and processes on signal crayfish virome composition: e.g., the differences in signal crayfish population density, the non-random dispersal of host individuals from the core to the invasion fronts, and the transfer of viruses from the native co-occurring and phylogenetically related crayfish species. The study reveals a high, previously undiscovered diversity of divergent RNA viruses associated with signal crayfish, and sets foundations for understanding the potential risk of virus transmissions as a result of this invader’s dispersal.
Keywords: signal crayfish virome, RNA viruses, invasive alien species, invasion range, high-throughput sequencing
Published in DiRROS: 19.07.2024; Views: 206; Downloads: 98
.pdf Full text (4,22 MB)
This document has many files! More...

5.
Metagenomic characterization of parental and production CHO cell lines for detection of adventitious viruses
Katarina Bačnik, Denis Kutnjak, Barbara Jerič Kokelj, Nika Tuta, Tan Lončar, Matjaž Vogelsang, Maja Ravnikar, 2021, original scientific article

Abstract: Viral contamination is a major concern for biological products. Therefore, virus testing of raw materials and cells is essential for the safety of the final product. We used high-throughput sequencing to detect viral-like sequences in selected CHO cell lines. Our aim was to test various approaches of sample preparation, to establish a pipeline for metagenomic analysis and to characterize standard viral metagenome of production and parental CHO cell lines. The comparison of the metagenomics composition of the differently prepared samples showed that among four tested approaches sequencing of ribosomal RNA depleted total RNA is the most promising approach. The metagenomics investigation of one production and three parental CHO cell lines of diverse origin did not indicate the presence of adventitious viral agents in the investigated samples. The study revealed an expected background of virus-like nucleic acids in the samples, which originate from remains of expression vectors, endogenized viral elements and residuals of bacteriophages.
Published in DiRROS: 19.07.2024; Views: 220; Downloads: 78
.pdf Full text (881,86 KB)
This document has many files! More...

6.
Evaluation of methods and processes for robust monitoring of SARS-CoV-2 in wastewater
Olivera Maksimović, Živa Lengar, Zala Kogej Zwitter, Katarina Bačnik, Irena Bajde, Mojca Milavec, Anže Županič, Nataša Mehle, Denis Kutnjak, Maja Ravnikar, Ion Gutiérrez-Aguirre, 2022, original scientific article

Abstract: The SARS-CoV-2 pandemic has accelerated the development of virus concentration and molecular-based virus detection methods, monitoring systems and overall approach to epidemiology. Early into the pandemic, wastewater-based epidemiology started to be employed as a tool for tracking the virus transmission dynamics in a given area. The complexity of wastewater coupled with a lack of standardized methods led us to evaluate each step of the analysis individually and see which approach gave the most robust results for SARS-CoV-2 monitoring in wastewater. In this article, we present a step-by-step, retrospective view on the method development and implementation for the case of a pilot monitoring performed in Slovenia. We specifically address points regarding the thermal stability of the samples during storage, screening for the appropriate sample concentration and RNA extraction procedures and real-time PCR assay selection. Here, we show that the temperature and duration of the storage of the wastewater sample can have a varying impact on the detection depending on the structural form in which the SARS-CoV-2 target is present. We found that concentration and RNA extraction using Centricon filtration units coupled with Qiagen RNA extraction kit or direct RNA capture and extraction using semi-automated kit from Promega give the most optimal results out of the seven methods tested. Lastly, we confirm the use of N1 and N2 assays developed by the CDC (USA) as the best performing assays among four tested in combination with Fast Virus 1-mastermix. Data show a realistic overall process for method implementation as well as provide valuable information in regards to how different approaches in the analysis compare to one another under the specific conditions present in Slovenia during a pilot monitoring running from the beginning of the pandemic.
Keywords: waste water, method evolution, virus detection, SARS-CoV-2
Published in DiRROS: 17.07.2024; Views: 113; Downloads: 96
.pdf Full text (1,32 MB)
This document has many files! More...

7.
Risk perception associated with an emerging agri-food risk in Europe : plant viruses in agriculture
Johny Hilaire, Sophie Tindale, Glyn Jones, Gabriela Pingarron-Cardenas, Katarina Bačnik, Mercy Ojo, Lynn J. Frewer, 2022, original scientific article

Abstract: Background Research into public risk perceptions associated with emerging risks in agriculture and supply chains has focused on technological risks, zoonotic diseases, and food integrity, but infrequently on naturally occurring diseases in plants. Plant virus infections account for global economic losses estimated at $30 billion annually and are responsible for nearly 50% of plant diseases worldwide, threatening global food security. This research aimed to understand public perceptions of emerging risks and benefits associated with plant viruses in agriculture in Belgium, Slovenia, Spain, and the UK. Methods Online qualitative semi-structured interviews with 80 European consumers were conducted, including 20 participants in each of Belgium, Slovenia, the UK, and Spain. Microsoft Streams was used to transcribe the interview data, and NVivo was utilized to code the transcripts and analyze the data. Results The results indicate that, while study participants were relatively unfamiliar with the plant viruses and their potential impacts, plant viruses evoked perceived risks in a similar way to other emerging risks in the agri-food sector. These included risks to environment and human health, and the economic functioning of the relevant supply chain. Some participants perceived both risks and benefits to be associated with plant viruses. Benefits were perceived to be associated with improved plant resistance to viruses. Conclusions The results provide the basis for risk regulation, policy, and communication developments. Risk communication needs to take account of both risk and benefit perceptions, as well as the observation that plant viruses are perceived as an emerging, rather than an established, understood, and controlled risk. Some participants indicated the need for risk–benefit communication strategies to be developed, including information about the impacts of the risks, and associated mitigation strategies. Participants perceived that responsibility for control of plant viruses should be conferred on actors within the supply chain, in particular primary producers, although policy support (for example, financial incentivization) should be provided to improve their motivation to instigate risk mitigation activities.
Keywords: consumer, disease, food security, supply chain, policy
Published in DiRROS: 16.07.2024; Views: 141; Downloads: 92
.pdf Full text (1,10 MB)
This document has many files! More...

8.
Hydrodynamic cavitation efficiently inactivates potato virus Y in water
Arijana Filipić, Tadeja Lukežič, Katarina Bačnik, Maja Ravnikar, Meta Ješelnik, Tamara Košir, Martin Petkovšek, Mojca Zupanc, Matevž Dular, Ion Gutiérrez-Aguirre, 2022, original scientific article

Abstract: Waterborne plant viruses can destroy entire crops, leading not only to high financial losses but also to food shortages. Potato virus Y (PVY) is the most important potato viral pathogen that can also affect other valuable crops. Recently, it has been confirmed that this virus is capable of infecting host plants via water, emphasizing the relevance of using proper strategies to treat recycled water in order to prevent the spread of the infectious agents. Emerging environmentally friendly methods such as hydrodynamic cavitation (HC) provide a great alternative for treating recycled water used for irrigation. In the experiments conducted in this study, laboratory HC based on Venturi constriction with a sample volume of 1 L was used to treat water samples spiked with purified PVY virions. The ability of the virus to infect plants was abolished after 500 HC passes, corresponding to 50 min of treatment under pressure difference of 7 bar. In some cases, shorter treatments of 125 or 250 passes were also sufficient for virus inactivation. The HC treatment disrupted the integrity of viral particles, which also led to a minor damage of viral RNA. Reactive species, including singlet oxygen, hydroxyl radicals, and hydrogen peroxide, were not primarily responsible for PVY inactivation during HC treatment, suggesting that mechanical effects are likely the driving force of virus inactivation. This pioneering study, the first to investigate eukaryotic virus inactivation by HC, will inspire additional research in this field enabling further improvement of HC as a water decontamination technology.
Keywords: hydrodynamic cavitation, potato virus Y, virus inactivation, water decontamination
Published in DiRROS: 16.07.2024; Views: 127; Downloads: 114
.pdf Full text (3,43 MB)
This document has many files! More...

9.
Tomato brown rugose fruit virus in aqueous environments : survival and significance of water-mediated transmission
Nataša Mehle, Katarina Bačnik, Irena Bajde, Jakob Brodarič, Adrian Fox, Ion Gutiérrez-Aguirre, Miha Kitek, Denis Kutnjak, Yue Lin Loh, Olivera Maksimović, Maja Ravnikar, Elise Vogel, Christine Vos, Ana Vučurović, 2023, original scientific article

Abstract: Tomato brown rugose fruit virus (ToBRFV) has recently emerged as a major disease of tomatoes and peppers. ToBRFV is a seed- and contact-transmitted virus. In Slovenia, ToBRFV RNA was detected in samples of wastewater, river, and water used to irrigate plants. Even though the source of detected RNA could not be clearly established, this raised the question of the significance of the detection of ToBRFV in water samples and experimental studies were performed to address this question. The data presented here confirm that the release of virus particles from the roots of infected plants is a source of infectious ToBRFV particles in water and that the virus can remain infective up to four weeks in water stored at room temperature, while its RNA can be detected for much longer. These data also indicate that irrigation with ToBRFV-contaminated water can lead to plant infection. In addition, it has been shown that ToBRFV circulated in drain water in commercial tomato greenhouses from other European countries and that an outbreak of ToBRFV can be detected by regular monitoring of drain water. A simple method for concentrating ToBRFV from water samples and a comparison of the sensitivity of different methods, including the determination of the highest ToBRFV dilution still capable of infecting test plants, were also investigated. The results of our studies fill the knowledge gaps in the epidemiology and diagnosis of ToBRFV, by studying the role of water-mediated transmission, and provide a reliable risk assessment to identify critical points for monitoring and control.
Keywords: tomato brown rugose fruit virus, tomato, hydroponics, water-linked epidemiology, survival
Published in DiRROS: 12.07.2024; Views: 141; Downloads: 149
.pdf Full text (3,00 MB)
This document has many files! More...

10.
Virome analysis of irrigation water sources provides extensive insights into the diversity and distribution of plant viruses in agroecosystems
Olivera Maksimović, Katarina Bačnik, Mark Paul Selda Rivarez, Ana Vučurović, Nataša Mehle, Maja Ravnikar, Ion Gutiérrez-Aguirre, Denis Kutnjak, 2024, original scientific article

Abstract: Plant viruses pose a significant threat to agriculture. Several are stable outside their hosts, can enter water bodies and remain infective for prolonged periods of time. Even though the quality of irrigation water is of increasing importance in the context of plant health, the presence of plant viruses in irrigation waters is understudied. In this study, we conducted a large-scale high-throughput sequencing (HTS)-based virome analysis of irrigation and surface water sources to obtain complete information about the abundance and diversity of plant viruses in such waters. We detected nucleic acids of plant viruses from 20 families, discovered several novel plant viruses from economically important taxa, like Tobamovirus and observed the influence of the water source on the present virome. By comparing viromes of water and surrounding plants, we observed presence of plant viruses in both compartments, especially in cases of large-scale outbreaks, such as that of tomato mosaic virus. Moreover, we demonstrated that water virome data can extensively inform us about the distribution and diversity of plant viruses for which only limited information is available from plants. Overall, the results of the study provided extensive insights into the virome of irrigation waters from the perspective of plant health. It also suggested that an HTS-based water virome surveillance system could be used to detect potential plant disease outbreaks and to survey the distribution and diversity of plant viruses in the ecosystem.
Keywords: plant viruses, environmental water testing, high-throughput sequencing, agroecosystems, irrigation water, virome
Published in DiRROS: 29.03.2024; Views: 394; Downloads: 181
.pdf Full text (1,67 MB)
This document has many files! More...

Search done in 0.19 sec.
Back to top