Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Irena Paulin) .

1 - 10 / 16
First pagePrevious page12Next pageLast page
1.
Harmonizing microstructures and enhancing mechanical resilience : novel powder metallurgy approach for Zn–Mg alloys
Anna Boukalová, Jiří Kubásek, David Nečas, Peter Minárik, Črtomir Donik, Drahomír Dvorský, Dalibor Vojtěch, Alena Michalcová, Matjaž Godec, Irena Paulin, 2024, original scientific article

Abstract: Zinc alloys are recognised for their excellent biocompatibility and favourable corrosion rates, making them suitable for bioabsorbable implants. However, their mechanical properties necessitate improvement to fulfil the rigorous requirements of biomedical applications. This research focuses on engineering pseudo-harmonic structures within zinc alloys through a comprehensive method combining mechanical alloying, spark plasma sintering, and hot extrusion techniques. This fabrication process results in a composite material characterised by a soft core surrounded by a continuous, three-dimensional, ultrafine-grained hard shell. The experiment involved blending pure zinc with Zn–1Mg alloy powder, leading to the formation of both ductile zinc and fine-grained Zn–1Mg regions. While the Mg2Zn11 intermetallic phase was found to enhance the alloy's mechanical strength, the presence of oxide shells adversely affected the material's properties. The elimination of these shells via hot extrusion markedly improved the alloy's tensile strength, reaching an average value of tensile strength of 333 ± 7 MPa. This study provides significant insights into the material engineering of zinc-based alloys for biodegradable implant applications, demonstrating a viable approach to optimising their mechanical performance.
Keywords: zinc, magnesium, biodegradable, powder metallurgy, harmonic structure
Published in DiRROS: 23.07.2024; Views: 114; Downloads: 107
.pdf Full text (14,29 MB)
This document has many files! More...

2.
Microstructural, corrosion and mechanical properties of a WE43 alloy : conventional extrusion versus SPD
Anna Dobkowska, Aleksandra Zielińska, Irena Paulin, Črtomir Donik, Milena Koralnik, Bogusława Adamczyk-Cieślak, Monika Wieczorek-Czarnocka, Dariusz Kuc, Jiří Kubásek, Tomasz Mikuszewski, Matjaž Godec, Jarosław Mizera, 2024, original scientific article

Abstract: A hexagonal close-packed-structure WE43 alloy was extruded without any preheating of the initial billet using extrusion with an oscillating die to improve the corrosion and mechanical properties. The WE43 alloy was extruded at high ratios of R 1 5:1, R 2 7:1 and R 3 10:1. Electron back-scatter diffraction and transmission electron microscopy were used to determine the microstructural properties of the alloys. The influence of the extrusion method and the extrusion ratios on the corrosion and mechanical properties were investigated. Electrochemical tests were performed, and the corrosion damage was inspected. Tensile tests were made using micro specimens. When compared to conventional extrusion, the microstructural changes obtained with the KoBo method at R 5:1 increased the corrosion resistance, which was not only due to the grain refinement, but also due to the intensity of the texture. A decline in the corrosion resistance of the alloys deformed at higher extrusion ratios was observed. This was a result of the massive plastic strain imposed by the KoBo die. The room-temperature mechanical properties of the KoBo-extruded alloys were improved. However, at higher temperatures the mechanical properties decreased due to the solutioning of tiny triple precipitates.
Keywords: WE43, several plastic deformation, microstructure, corrosion, mechanical properties
Published in DiRROS: 23.07.2024; Views: 93; Downloads: 32
URL Link to file

3.
4.
5.
Processing aluminium EN AW 7075 alloy using selective laser melting
Nejc Velikajne, Jože Medved, Matjaž Godec, Irena Paulin, complete scientific database of research data

Abstract: Selective laser melting (SLM) is an additive manufacturing process, forming the desired geometry by selective layer fusion of powder material. Unlike conventional manufacturing processes, highly complex parts can be designed and manufactured with high accuracy and little post processing. Currently, different types of steel, aluminium, titanium and nickel-based alloys have been successfully processed; however, high strength aluminium alloy EN AW 7075 has not been processed with satisfying quality. The main focus of the investigation is to develop a new alloy which is more suitable for the SLM process for the wide used aluminium alloy EN AW 7075. But before that, gas-atomized powder material was characterized in terms of statistical distribution. A wide range of process parameters and different pre-heating temperatures were selected to optimize the process in terms of optimum volume density and reducing the effect of hot cracking. However, all laser-melted parts exhibited hot cracks which typically appear in aluminium alloy EN AW 7075.
Keywords: EN AW 7075, aluminium alloy, hot cracks, relative density, selective laser melting (SLM)
Published in DiRROS: 22.04.2024; Views: 287; Downloads: 0

6.
Bioresorbability dependence on microstructure of additivelly- manufactured and conventionally-produced Fe-Mn alloys
Matjaž Godec, Jakob Kraner, Danijela Anica Skobir Balantič, Irena Paulin, Damjana Drobne, Veno Kononenko, Aleksandra Kocijan, Paul J. McGuiness, Črtomir Donik, 2024, complete scientific database of research data

Abstract: The dataset supports the results shown in the tables and figures in the article entitled “Bioresorbability Dependence on Microstructure of Additivelly-Manufactured and Conventionally-Produced Fe-Mn Alloys” (doi.org/10.1016/j.jmrt.2024.04.097). It contains measurements of corrosion resistance of Fe-Mn samples, phase analysis of samples A, B and C, surface and depth profiling XPS, EDS measurements of a cross-section of Fe-Mn powder particles and viability measurements results.
Keywords: Fe-Mn alloy, laser powder bed fusion, bioresorbable, microstructure, corrosion behaviour, biocompatibility
Published in DiRROS: 12.04.2024; Views: 410; Downloads: 250
.xlsx Full text (2,55 MB)
This document has many files! More...

7.
Optimization of SLM and DED process parameters for the development of hybrid additive manufactured Ti6Al4V structures
Irena Paulin, 2023, published scientific conference contribution abstract (invited lecture)

Published in DiRROS: 04.04.2024; Views: 286; Downloads: 110
.pdf Full text (52,42 KB)
This document has many files! More...

8.
Relevance of cold-rolling technology for the texture and anisotropy of EN AW-8011A aluminum alloys
Jakob Kraner, Kyung Il Kim, Bonghwan Kim, Shae K. Kim, Irena Paulin, 2023, original scientific article

Keywords: aluminium alloys, cold rolling, SEM-EBSD, textures, anisotropy
Published in DiRROS: 08.03.2024; Views: 277; Downloads: 138
.pdf Full text (2,04 MB)
This document has many files! More...

9.
High temperature oxidation of EN AW 7075 aluminium alloy
Nejc Velikajne, Tilen Balaško, Jaka Burja, Matjaž Godec, Irena Paulin, 2024, published scientific conference contribution

Abstract: Aluminium alloys are highly valued for their exceptional strength-to-weight ratio, making them a preferred choice in structural applications. Among these alloys, EN AW 7075 stands out for its superior mechanical properties, finding widespread use in industries such as aerospace, mechanical engineering, and sports equipment. This study investigates the high-temperature oxidation behavior of EN AW 7075 alloy. The gathered results can provide valuable insights into the behavior of the mentioned alloy during the selective laser melting (SLM) process. These results can contribute to a better understanding of how the alloy responds to specific conditions and parameters. SLM is an additive manufacturing technique. The process involves the sequential steps of preheating, melting, and rapid cooling of metal powder. To minimize the influence of oxygen, the build chamber is filled with inert gas. A protective argon atmosphere is continuously maintained. However, despite these precautions, oxidation can still occur, leading to potential issues in the final product. Hence, we examined the oxidation kinetics of the EN AW 7075 alloy in an oxygen atmosphere in the temperature range of 300-500 °C. The findings of this investigation significantly contribute to an understanding of the behavior of the alloy during high-temperature oxidation, particularly for ongoing studies focused on processing Al-Zn-Mg-Cu alloys using the selective laser melting technique. Thermogravimetry was employed to analyze the oxidizing behavior, with three samples subjected to a 6-hour exposure in an oxidizing atmosphere at temperatures of 300, 400, and 500 °C. Surprisingly, no oxidation occurred, as indicated by the negligible and negative changes in mass observed across all samples.
Keywords: EN AW 7075, high-temperature oxidation, oxide film, selective laser melting
Published in DiRROS: 28.02.2024; Views: 362; Downloads: 160
.pdf Full text (897,18 KB)
This document has many files! More...

10.
Effect of heat treatment on thermal conductivity of additively manufactured AISI H13 tool steel
Samo Tome, Blaž Karpe, Irena Paulin, Matjaž Godec, 2024, published scientific conference contribution

Abstract: AISI H13 is commonly used for tooling, where higher wear resistance, thermal fatigue resistance, or hot toughness is required. Such examples include forging dies, plastic molds, hot shear blades, high-pressure die casting, and extrusion dies. Thus, thermal conductivity is one of the most important factors for hot work tools. Typically, the work cycle of a hot work tool designed for forging consists of four main phases: the forging stroke, with which the die imparts its shape onto the part, a brief pause while the die is reset to its original position, a lubrication phase, and a post lubrication dwell phase. During the forging phase, a significant amount of heat is transferred to the die while it is in contact with the part. This heat must then be dispelled for the part to return to a working temperature. While somewhat different, other hot work processes mentioned above are similar in that the hot work tool gets heated to a high temperature due to the contact with the object of deformation. The process of additive manufacturing (AM) promises better, more efficient tool production with features like conforming cooling channels, which would reduce the thermal fatigue of tools, prolonging tool life. However, the powder bed fusion (PBF) method creates a columnar microstructure, which has a detrimental effect on the thermal conductivity of H13 tool steel. Our investigation focused on the beneficial effect of heat treatment, specifically annealing at different temperatures, on the thermal conductivity of AM-produced H13 parts.
Keywords: SLM, thermal conductivity, tool steel, heat treatment
Published in DiRROS: 28.02.2024; Views: 318; Downloads: 152
.pdf Full text (655,96 KB)
This document has many files! More...

Search done in 0.88 sec.
Back to top