Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (David Maria Tobaldi) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Tailoring the crystalline and amorphous phase ratios of TiO2 through the use of organic additives during hydrothermal synthesis
Nejc Rozman, Andrijana Sever Škapin, David Maria Tobaldi, Goran Dražić, Peter Nadrah, 2024, original scientific article

Abstract: The photocatalytic properties of TiO2 are primarily determined by its crystallinity and crystalline phase ratios. To improve the photocatalytic properties of TiO2, greater control over the formation of crystalline and amorphous phases during synthesis is therefore required. In this study, we demonstrate how the addition of minute amounts of three organic compounds (isopropanol, acetone and acetic acid) during hydrothermal treatment affects the amorphous and crystalline phase ratios: the addition of isopropanol or acetone accelerates the phase transition from anatase and brookite to rutile, whereas the addition of acetic acid inhibits the transformation of anatase to rutile, increasing the content of amorphous phase compared to samples where no organic compound was added. We show that the combination of the organic compound added, along with the duration of the hydrothermal treatment, can be used to tailor the phase composition of TiO2, so as to obtain either: i) TiO2 with a high content of both rutile and amorphous phase, ii) TiO2 with a high rutile content and iii) TiO2 with different ratios of all four phases, when the duration of synthesis is short (2–4 h). The materials synthesized exhibited high photocatalytic activity (in most cases higher than P25), which is attributed to the beneficial phase composition and high specific surface area.
Keywords: sol-gel processes, X-ray methods, chemical properties, TiO2, photocatalysis
Published in DiRROS: 14.08.2024; Views: 41; Downloads: 87
.pdf Full text (3,64 MB)
This document has many files! More...

2.
Hydrothermal synthesis of rare-earth modified titania : influence on phase composition, optical properties, and photocatalytic activity
Nejc Rozman, David Maria Tobaldi, Uroš Cvelbar, Harinarayanan Puliyalil, Joao Antonio Labrincha, Andraž Legat, Andrijana Sever Škapin, 2019, original scientific article

Abstract: In order to expand the use of titania indoor as well as to increase its overall performance, narrowing the band gap is one of the possibilities to achieve this. Modifying with rare earths (REs) has been relatively unexplored, especially the modification of rutile with rare earth cations. The aim of this study was to find the influence of the modification of TiO2 with rare earths on its structural, optical, morphological, and photocatalytic properties. Titania was synthesized using TiOSO4 as the source of titanium via hydrothermal synthesis procedure at low temperature (200 °C) and modified with selected rare earth elements, namely, Ce, La, and Gd. Structural properties of samples were determined by X-ray powder diffraction (XRD), and the phase ratio was calculated using the Rietveld method. Optical properties were analyzed by ultraviolet and visible light (UV-Vis) spectroscopy. Field emission scanning electron microscope (FE-SEM) was used to determine the morphological properties of samples and to estimate the size of primary crystals. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical bonding properties of samples. Photocatalytic activity of the prepared photocatalysts as well as the titania available on the market (P25) was measured in three different setups, assessing volatile organic compound (VOC) degradation, NOx abatement, and water purification. It was found out that modification with rare earth elements slows down the transformation of anatase and brookite to rutile. Whereas the unmodified sample was composed of only rutile, La- and Gd-modified samples contained anatase and rutile, and Ce-modified samples consisted of anatase, brookite, and rutile. Modification with rare earth metals has turned out to be detrimental to photocatalytic activity. In all cases, pure TiO2 outperformed the modified samples. Cerium-modified TiO2 was the least active sample, despite having a light absorption tail up to 585 nm wavelength. La- and Gd-modified samples did not show a significant shift in light absorption when compared to the pure TiO2 sample. The reason for the lower activity of modified samples was attributed to a greater Ti3+/Ti4+ ratio and a large amount of hydroxyl oxygen found in pure TiO2. All the modified samples had a smaller Ti3+/Ti4+ ratio and less hydroxyl oxygen
Keywords: TiO2, photocatalytic activity, rare earths, modification, visible light activity
Published in DiRROS: 22.11.2023; Views: 492; Downloads: 227
.pdf Full text (2,40 MB)
This document has many files! More...

Search done in 0.07 sec.
Back to top