Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Busby Eloise J.) .

1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
An assessment of the reproducibility of reverse transcription digital PCR quantification of HIV-1
Samreen Falak, Rainer Macdonald, Eloise J. Busby, Denise M. O'Sullivan, Mojca Milavec, Annabell Plauth, Martin Kammel, Heinz Zeichhardt, Hans-Peter Grunert, Andreas Kummrow, Jim F. Huggett, 2022, original scientific article

Abstract: Viral load monitoring in human immunodeficiency virus type 1 (HIV-1) infection is often performed using reverse transcription quantitative PCR (RT-qPCR) to observe response to treatment and identify the development of resistance. Traceability is achieved using a calibration hierarchy traceable to the International Unit (IU). IU values are determined using consensus agreement derived from estimations by different laboratories. Such a consensus approach is necessary due to the fact that there are currently no reference measurement procedures available that can independently assign a reference value to viral reference materials for molecular in vitro diagnostic tests. Digital PCR (dPCR) is a technique that has the potential to be used for this purpose. In this paper, we investigate the ability of reverse transcriptase dPCR (RT-dPCR) to quantify HIV-1 genomic RNA without calibration. Criteria investigated included the performance of HIV-1 RNA extraction steps, choice of reverse transcription approach and selection of target gene with assays performed in both single and duplex format. We developed a protocol which was subsequently applied by two independent laboratories as part of an external quality assurance (EQA) scheme for HIV-1 genome detection. Our findings suggest that RT-dPCR could be used as reference measurement procedure to aid the value assignment of HIV-1 reference materials to support routine calibration of HIV-1 viral load testing by RT-qPCR.
Published in DiRROS: 16.07.2024; Views: 38; Downloads: 10
.pdf Full text (869,23 KB)
This document has many files! More...

Search done in 0.9 sec.
Back to top