1011. Comparison between proteome and transcriptome response in potato (Solanum tuberosum L.) leaves following potato virus Y (PVY) infectionTjaša Stare, Katja Stare, Wolfram Weckwerth, Stefanie Wienkoop, Kristina Gruden, 2017, original scientific article Abstract: Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato (Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it. Keywords: proteomics, transcriptomics, potato, potato virus Y Published in DiRROS: 24.07.2024; Views: 355; Downloads: 240 Full text (1,41 MB) This document has many files! More... |
1012. quantGenius : implementation of a decision support system for qPCR-based gene quantificationŠpela Baebler, Miha Svalina, Marko Petek, Katja Stare, Ana Rotter, Maruša Pompe Novak, Kristina Gruden, 2017, original scientific article Abstract: Background
Quantitative molecular biology remains a challenge for researchers due to inconsistent approaches for control of errors in the final results. Due to several factors that can influence the final result, quantitative analysis and interpretation of qPCR data are still not trivial. Together with the development of high-throughput qPCR platforms, there is a need for a tool allowing for robust, reliable and fast nucleic acid quantification.
Results
We have developed “quantGenius” (http://quantgenius.nib.si), an open-access web application for a reliable qPCR-based quantification of nucleic acids. The quantGenius workflow interactively guides the user through data import, quality control (QC) and calculation steps. The input is machine- and chemistry–independent. Quantification is performed using the standard curve approach, with normalization to one or several reference genes. The special feature of the application is the implementation of user-guided QC-based decision support system, based on qPCR standards, that takes into account pipetting errors, assay amplification efficiencies, limits of detection and quantification of the assays as well as the control of PCR inhibition in individual samples. The intermediate calculations and final results are exportable in a data matrix suitable for further statistical analysis or visualization. We additionally compare the most important features of quantGenius with similar advanced software tools and illustrate the importance of proper QC system in the analysis of qPCR data in two use cases.
Conclusions
To our knowledge, quantGenius is the only qPCR data analysis tool that integrates QC-based decision support and will help scientists to obtain reliable results which are the basis for biologically meaningful data interpretation. Keywords: quantitative molecular biology, quantitative PCR, nucleic acid quantification, web application, decision support system Published in DiRROS: 24.07.2024; Views: 305; Downloads: 203 Full text (1,49 MB) This document has many files! More... |
1013. |
1014. |
1015. |
1016. Zoantharians (Hexacorallia: Zoantharia) associated with cold-water corals in the Azores Region: new species and associations in the deep seaMarina Carreiro-Silva, Oscar Ocaňa, David Stanković, ĺris Sampaio, Filipe M. Porteiro, Marie-Claire Fabri, Sergio Stefanni, 2017, original scientific article Abstract: Zoantharians are a group of cnidarians that are often found in association with marine invertebrates, including corals, in shallow and deep-sea environments. However, little is known about deep-sea zoantharian taxonomy, specificity and nature of their associations with their coral hosts. In this study, analyses of molecular data (mtDNA COI, 16S, and 12S rDNA) coupled with ecological and morphological characteristics were used to examine zoantharian specimens associated with cold-water corals (CWC) at depths between 110 and 800 m from seamounts and island slopes in the Azores region. The zoantharians examined were found living in association with stylasterids, antipatharians and octocorals. From the collected specimens, four new species were identified: (1) Epizoanthus martinsae sp. n. associated with the antipatharian Leiopathes sp.; (2) Parazoanthus aliceae sp. n. associated with the stylasterid Errina dabneyi (Pourtalès, 1871); (3) Zibrowius alberti sp. n. associated with octocorals of the family Primnoidae [Paracalyptrophora josephinae (Lindström, 1877)] and the family Plexauridae (Dentomuricea aff. meteor Grasshoff, 1977); (4) Hurlizoanthus hirondelleae sp. n. associated with the primnoid octocoral Candidella imbricata (Johnson, 1862). In addition, based on newly collected material, morphological and molecular data and phylogenic reconstruction, the zoantharian Isozoanthus primnoidus Carreiro-Silva, Braga-Henriques, Sampaio, de Matos, Porteiro & Ocaña, 2011, associated with the primnoid octocoral Callogorgia verticillata (Pallas, 1766), was reclassified as Zibrowius primnoidus comb. nov. The zoantharians, Z. primnoidus comb. nov., Z. alberti sp. n., and H. hirondelleae sp. n. associated with octocorals showed evidence of a parasitic relationship, where the zoantharian progressively eliminates gorgonian tissue and uses the gorgonian axis for structure and support, and coral sclerites for protection. In contrast, the zoantharian P. aliceae sp. n. associated with the stylasterid E. dabneyi and the zoantharian E. martinsae sp. n. associated with the antipatharian Leiopathes sp., appear to use the coral host only as support with no visible damage to the host. The monophyly of octocoral-associated zoantharians suggests that substrate specificity is tightly linked to the evolution of zoantharians. Keywords: antipatharians, octocorals, Azores, gorgonians, molecular taxonomy, phylogeny, stylasterids Published in DiRROS: 24.07.2024; Views: 273; Downloads: 191 Full text (4,66 MB) This document has many files! More... |
1017. |
1018. Filling the gaps in diagnostics of Pepino mosaic virus and Potato spindle tuber viroid in water and tomato seeds and leavesNataša Mehle, Polona Kogovšek, Nejc Rački, Tjaša Jakomin, Ion Gutiérrez-Aguirre, Petra Kramberger, Maja Ravnikar, 2017, original scientific article Abstract: Waterborne and seedborne Pepino mosaic virus (PepMV) and Potato spindle tuber viroid (PSTVd) pose serious threats to tomato production due to seed transmission and mechanical transmission, coupled with their long-term stability outside the host plant. Therefore, rapid and sensitive diagnostic procedures are needed to prevent the spread of these quarantine pathogens. In particular, water and seed contamination are difficult to detect and confirm without efficient concentration methods. This study presents procedures that improve detection of PSTVd from tomato seeds and leaf tissue, and PepMV from water and tomato leaf tissue. For efficient concentration of PepMV from water samples, a procedure was optimized using convective interaction media monolithic chromatography columns, which provides concentration by three orders of magnitude. For concentration of PSTVd from seed extracts, an easy-to-use and efficient method was developed based on RNA binding to positively charged anion-exchange resin beads that provides up to 100-fold more sensitive detection in comparison with procedures without a concentration step. This thus allows confirmation of RT-qPCR results with sequencing of RT-PCR products in samples with low viroid levels. In addition, reverse-transcription loop-mediated isothermal amplification assays for detection of PSTVd and PepMV were optimized and adapted to both laboratory and on-site testing requirements. This allows rapid detection of these pathogens in crude leaf homogenates, in under 30 min. These procedures of concentration and detection are shown to be efficient and to fill the gaps in diagnostics of PepMV and PSTVd, especially when these pathogens are present at low levels in difficult matrices such as water and seeds. Keywords: PSTVd, PepMV, seeds, water, concentration, loop-mediated isothermal amplification Published in DiRROS: 24.07.2024; Views: 352; Downloads: 162 Full text (312,20 KB) This document has many files! More... |
1019. |
1020. 1-aminocyclopropane-1-carboxylate oxidase induction in tomato flower pedicel phloem and abscission related processes are differentially sensitive to ethyleneMarko Chersicola, Aleš Kladnik, Magda Tušek-Žnidarič, Tanja Mrak, Kristina Gruden, Marina Dermastia, 2017, original scientific article Abstract: Ethylene has impact on several physiological plant processes, including abscission, during which plants shed both their vegetative and reproductive organs. Cell separation and programmed cell death are involved in abscission, and these have also been correlated with ethylene action. However, the detailed spatiotemporal pattern of the molecular events during abscission remains unknown. We examined the expression of two tomato ACO genes, LeACO1, and LeACO4 that encode the last enzyme in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylate oxidase (ACO), together with the expression of other abscission-associated genes involved in cell separation and programmed cell death, during a period of 0–12 h after abscission induction in the tomato flower pedicel abscission zone and nearby tissues. In addition, we determined their localization in specific cell layers of the flower pedicel abscission zone and nearby tissues obtained by laser microdissection before and 8 h after abscission induction. The expression of both ACO genes was localized to the vascular tissues in the pedicel. While LeACO4 was more uniformly expressed in all examined cell layers, the main expression site of LeACO1 was in cell layers just outside the abscission zone in its proximal and distal part. We showed that after abscission induction, ACO1 protein was synthesized in phloem companion cells, in which it was localized mainly in the cytoplasm. Samples were additionally treated with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene actions, and analyzed 8 h after abscission induction. Cell-layer-specific changes in gene expression were observed together with the specific localization and ethylene sensitivity of the hallmarks of cell separation and programmed cell death. While treatment with 1-MCP prevented separation of cells through inhibition of the expression of polygalacturonases, which are the key enzymes involved in degradation of the middle lamella, this had less impact on the occurrence of different kinds of membrane vesicles and abscission-related programmed cell death. In the flower pedicel abscission zone, the physical progressions of cell separation and programmed cell death are perpendicular to each other and start in the vascular tissues. Keywords: abscission, ACO, cell separation, ethylene, laser microdissection, programmed cell death, tomato, ultrastructure Published in DiRROS: 24.07.2024; Views: 262; Downloads: 317 Full text (5,69 MB) This document has many files! More... |