Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Žabkar Sonja) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Exploring the safety of cannabidiol (CBD) : a comprehensive in vitro evaluation of the genotoxic and mutagenic potential of a CBD isolate and extract from Cannabis sativa L
Alja Štern, Matjaž Novak, Katja Kološa, Jurij Trontelj, Sonja Žabkar, Tjaša Šentjurc, Metka Filipič, Bojana Žegura, 2024, original scientific article

Abstract: Cannabidiol (CBD), a naturally occurring cyclic terpenoid found in Cannabis sativa L., is renowned for its diverse pharmacological benefits. Marketed as a remedy for various health issues, CBD products are utilized by patients as a supplementary therapy or post-treatment failure, as well as by healthy individuals seeking promised advantages. Despite its widespread use, information regarding potential adverse effects, especially genotoxic properties, is limited. The present study is focused on the mutagenic and genotoxic activity of a CBD isolate (99.4 % CBD content) and CBD-rich Cannabis sativa L extract (63.6 % CBD content) in vitro. Both CBD samples were non-mutagenic, as determined by the AMES test (OECD 471) but exhibited cytotoxicity for HepG2 cells (~IC50 (4 h) 26 µg/ml, ~IC50 (24 h) 6–8 µg/ml, MTT assay). Noncytotoxic concentrations induced upregulation of genes encoding metabolic enzymes involved in CBD metabolism, and CBD oxidative as well as glucuronide metabolites were found in cell culture media, demonstrating the ability of HepG2 cells to metabolize CBD. In this study, the CBD samples were found non-genotoxic. No DNA damage was observed with the comet assay, and no influence on genomic instability was observed with the cytokinesis block micronucleus and the γH2AX and p-H3 assays. Furthermore, no changes in the expression of genes involved in genotoxic stress response were detected in the toxicogenomic analysis, after 4 and 24 h of exposure. Our comprehensive study contributes valuable insights into CBD’s safety profile, paving the way for further exploration of CBD’s therapeutic applications and potential adverse effects.
Keywords: cannabidiol, CBD, metabolism, cytotoxicity, genotoxicity, mutagenicity
Published in DiRROS: 09.07.2024; Views: 24; Downloads: 21
.pdf Full text (4,31 MB)
This document has many files! More...

2.
Nature-inspired substituted 3-(imidazol-2-yl) morpholines targeting human topoisomerase IIα : dynophore-derived discovery
Barbara Herlah, Matej Janežič, Iza Ogris, Simona Golič Grdadolnik, Katja Kološa, Sonja Žabkar, Bojana Žegura, Andrej Perdih, 2024, original scientific article

Abstract: The molecular nanomachine, human DNA topoisomerase IIα, plays a crucial role in replication, transcription, and recombination by catalyzing topological changes in the DNA, rendering it an optimal target for cancer chemotherapy. Current clinical topoisomerase II poisons often cause secondary tumors as side effects due to the accumulation of double-strand breaks in the DNA, spurring the development of catalytic inhibitors. Here, we used a dynamic pharmacophore approach to develop catalytic inhibitors targeting the ATP binding site of human DNA topoisomerase IIα. Our screening of a library of nature-inspired compounds led to the discovery of a class of 3-(imidazol-2-yl) morpholines as potent catalytic inhibitors that bind to the ATPase domain. Further experimental and computational studies identified hit compound 17, which exhibited selectivity against the human DNA topoisomerase IIα versus human protein kinases, cytotoxicity against several human cancer cells, and did not induce DNA double-strand breaks, making it distinct from clinical topoisomerase II poisons. This study integrates an innovative natural product-inspired chemistry and successful implementation of a molecular design strategy that incorporates a dynamic component of ligand-target molecular recognition, with comprehensive experimental characterization leading to hit compounds with potential impact on the development of more efficient chemotherapies.
Keywords: topoisomerase II, catalytic inhibitors, chemotherapy, DNA damage, cancer
Published in DiRROS: 03.06.2024; Views: 256; Downloads: 121
.pdf Full text (7,99 MB)
This document has many files! More...

Search done in 0.05 sec.
Back to top