Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Human intention recognition by deep LSTM and transformer networks for real-time human-robot collaboration
Avtorji:ID Mavsar, Matija, Institut "Jožef Stefan" (Avtor)
ID Simonič, Mihael, Institut "Jožef Stefan" (Avtor)
ID Ude, Aleš, Institut "Jožef Stefan" (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2025.1708987/full
 
.pdf PDF - Predstavitvena datoteka, prenos (5,71 MB)
MD5: CAEAFF9578940192BCCB617D386F9090
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:Collaboration between humans and robots is essential for optimizing the performance of complex tasks in industrial environments, reducing worker strain, and improving safety. This paper presents an integrated human-robot collaboration (HRC) system that leverages advanced intention recognition for real-time task sharing and interaction. By utilizing state-of-the-art human pose estimation combined with deep learning models, we developed a robust framework for detecting and predicting worker intentions. Specifically, we employed LSTM-based and transformer-based neural networks with convolutional and pooling layers to classify human hand trajectories, achieving higher accuracy compared to previous approaches. Additionally, our system integrates dynamic movement primitives (DMPs) for smooth robot motion transitions, collision prevention, and automatic motion onset/cessation detection. We validated the system in a real-world industrial assembly task, demonstrating its effectiveness in enhancing the fluency, safety, and efficiency of human-robot collaboration. The proposed method shows promise in improving real-time decision-making in collaborative environments, offering a safer and more intuitive interaction between humans and robots.
Ključne besede:human-robot collaboration, deep neural networks, LSTM, transformer, intention recognition
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:19.09.2025
Datum sprejetja članka:26.11.2025
Datum objave:19.12.2025
Založnik:Frontiers
Leto izida:2025
Št. strani:str. 1-15
Številčenje:Vol. 12
Izvor:Švica
PID:20.500.12556/DiRROS-25143 Novo okno
UDK:004.5
ISSN pri članku:2296-9144
DOI:doi.org/10.3389/frobt.2025.1708987 Novo okno
COBISS.SI-ID:263645187 Novo okno
Avtorske pravice:© 2025 Mavsar, Simonič and Ude.
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 6. 1. 2026;
Datum objave v DiRROS:12.01.2026
Število ogledov:93
Število prenosov:42
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Frontiers in robotics and AI
Skrajšan naslov:Front. robot. AI
Založnik:Frontiers Media S.A.
ISSN:2296-9144
COBISS.SI-ID:28543271 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0076-2022
Naslov:Avtomatika, Robotika in Biokibernetika

Financer:EC - European Commission
Številka projekta:101070596
Naslov:European ROBotics and AI Network
Akronim:euROBIN

Financer:Ministry of Higher Education, Science and Innovation of Slovenia, Slovenian Research and Innovation Agency, and European Union - NextGenerationEU
Številka projekta:TN-06-0106
Naslov:Digitalna transformacija robotiziranih tovran prihodnosti
Akronim:DIGITOP

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:19.12.2025
Vezano na:VoR

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:nevronske mreže, sodelovanje med ljudmi in roboti


Nazaj