Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Refined radial basis function-generated finite difference analysis of non-Newtonian natural convection
Avtorji:ID Rot, Miha, Institut "Jožef Stefan" (Avtor)
ID Kosec, Gregor, Institut "Jožef Stefan" (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (6,58 MB)
MD5: F795176D1B4817DE1257C658726CC949
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:In this paper, we present a refined radial basis function-generated finite difference solution for a non-Newtonian fluid in a closed differentially heated cavity. The non-Newtonian behavior is modeled with the Ostwald–de Waele power law and the buoyancy with the Boussinesq approximation. The problem domain is discretized with scattered nodes without any requirement for a topological relation between them. This allows a trivial generalization of the solution procedure to complex irregular three dimensional (3D) domains, which is also demonstrated by solving the problem in a two dimensional (2D) and 3D geometry mimicking a porous filter. The results in 2D are compared with two reference solutions that use the finite volume method in a conjunction with two different stabilization techniques, where we achieved good agreement with the reference data. The refinement is implemented on top of a dedicated meshless node positioning algorithm using piecewise linear node density function that ensures sufficient node density in the center of the domain while maximizing the node density in a boundary layer where the most intense dynamic is expected. The results show that with a refined approach, more than five times fewer nodes are required to obtain the results with the same accuracy compared to the regular discretization. The paper also discusses the convergence with refined discretization for different scenarios for up to nodes, the impact of method parameters, the behavior of the flow in the boundary layer, the behavior of the viscosity, and the geometric flexibility of the proposed solution procedure.
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:13.01.2025
Datum sprejetja članka:24.02.2025
Datum objave:13.03.2025
Založnik:AIP Publishing
Leto izida:2025
Št. strani:8 str.
Številčenje:Vol. 37, Iss. 3
Izvor:ZDA
PID:20.500.12556/DiRROS-21758 Novo okno
UDK:532
ISSN pri članku:1070-6631
DOI:10.1063/5.0257896 Novo okno
COBISS.SI-ID:230006531 Novo okno
Avtorske pravice:© Author(s) 2025
Datum objave v DiRROS:25.03.2025
Število ogledov:489
Število prenosov:151
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Physics of fluids
Skrajšan naslov:Phys. fluids
Založnik:American Institute of Physics
ISSN:1070-6631
COBISS.SI-ID:37828865 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0095
Naslov:Vzporedni in porazdeljeni sistemi

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:N2-0275
Naslov:Inercijski učinki na tok tekočine v kompleksnih poroznih medijih

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Program financ.:Young Researcher Programme
Številka projekta:PR-10468

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:2021/43/I/ST3/00228

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:19.03.2025
Vezano na:VoR

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:prenos toplote, konvekcija


Nazaj