Naslov: | SegMine workflows for semantic microarray data analysis in Orange4WS |
---|
Avtorji: | ID Podpečan, Vid (Avtor) ID Lavrač, Nada (Avtor) ID Mozetič, Igor (Avtor) ID Kralj Novak, Petra (Avtor) ID Trajkovski, Igor (Avtor) ID Langohr, Laura (Avtor) ID Kulovesi, Kimmo (Avtor) ID Toivonen, Hannu (Avtor) ID Petek, Marko (Avtor) ID Motaln, Helena (Avtor) ID Gruden, Kristina (Avtor) |
Datoteke: | PDF - Predstavitvena datoteka, prenos (3,09 MB) MD5: 1B38989383A996814B87F82BE365B05C
URL - Izvorni URL, za dostop obiščite https://doi.org/10.1186/1471-2105-12-416
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | NIB - Nacionalni inštitut za biologijo
|
---|
Povzetek: | Background
In experimental data analysis, bioinformatics researchers increasingly rely on tools that enable the composition and reuse of scientific workflows. The utility of current bioinformatics workflow environments can be significantly increased by offering advanced data mining services as workflow components. Such services can support, for instance, knowledge discovery from diverse distributed data and knowledge sources (such as GO, KEGG, PubMed, and experimental databases). Specifically, cutting-edge data analysis approaches, such as semantic data mining, link discovery, and visualization, have not yet been made available to researchers investigating complex biological datasets.
Results
We present a new methodology, SegMine, for semantic analysis of microarray data by exploiting general biological knowledge, and a new workflow environment, Orange4WS, with integrated support for web services in which the SegMine methodology is implemented. The SegMine methodology consists of two main steps. First, the semantic subgroup discovery algorithm is used to construct elaborate rules that identify enriched gene sets. Then, a link discovery service is used for the creation and visualization of new biological hypotheses. The utility of SegMine, implemented as a set of workflows in Orange4WS, is demonstrated in two microarray data analysis applications. In the analysis of senescence in human stem cells, the use of SegMine resulted in three novel research hypotheses that could improve understanding of the underlying mechanisms of senescence and identification of candidate marker genes.
Conclusions
Compared to the available data analysis systems, SegMine offers improved hypothesis generation and data interpretation for bioinformatics in an easy-to-use integrated workflow environment. |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 26.10.2011 |
---|
Leto izida: | 2011 |
---|
Št. strani: | str. 416-1-416-16 |
---|
Številčenje: | Vol. 12, no. 416 |
---|
PID: | 20.500.12556/DiRROS-20051 |
---|
UDK: | 004.8 |
---|
ISSN pri članku: | 1471-2105 |
---|
DOI: | 10.1186/1471-2105-12-416 |
---|
COBISS.SI-ID: | 25208871 |
---|
Datum objave v DiRROS: | 05.08.2024 |
---|
Število ogledov: | 314 |
---|
Število prenosov: | 202 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |