Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Towards deploying highly quantized neural networks on FPGA using chisel
Avtorji:ID Vreča, Jure, Institut Jožef Stefan (Avtor)
ID Biasizzo, Anton, Institut Jožef Stefan (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://ieeexplore.ieee.org/document/10456782/authors#authors
 
.pdf PDF - Predstavitvena datoteka, prenos (419,83 KB)
MD5: C6531548B85A232A34C012D82828C084
 
Jezik:Angleški jezik
Tipologija:1.08 - Objavljeni znanstveni prispevek na konferenci
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:We present chisel4ml, a Chisel-based tool that generates hardware for highly quantized neural networks described in QKeras. Such networks typically use parameters with bitwidths less than 8 bits and may have pruned connections. Chisel4ml can generate the highly quantized neural network as a single combinational circuit with pipeline registers in between the different layers. It supports heterogeneous quantization where each layer can have a different precision. The full parallelization enables very low-latency and high throughput inference, that are required for certain tasks. We illustrate this on the triggering system for the CERN Large Hadron Collider, which filters out events of interest and sends them on for further processing. We compare our tool against hls4ml, a high-level synthesis based approach for deploying similar neural networks. Chisel4ml is still under development. However, it already achieves comparable results to hls4ml for some neural network architectures. Chisel4ml is available on https://github.com/cs-jsi/chisel4ml.
Ključne besede:neural networks, QKeras, Chisel4ml
Status publikacije:Objavljeno
Verzija publikacije:Recenzirani rokopis
Datum objave:19.03.2023
Založnik:IEEE
Leto izida:2023
Št. strani:Str. 161-167
Izvor:ZDA
PID:20.500.12556/DiRROS-18802 Novo okno
UDK:004
DOI:10.1109/DSD60849.2023.00032 Novo okno
COBISS.SI-ID:190218499 Novo okno
Avtorske pravice:©2023 IEEE
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 25. 3. 2024;
Datum objave v DiRROS:23.04.2024
Število ogledov:381
Število prenosov:244
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del monografije

Naslov:2023 26th Euromicro Conference on Digital System Design : DSD 2023
Kraj izida:Los Alamitos (CA)
Založnik:IEEE
ISBN:979-8-3503-4419-6
COBISS.SI-ID:190215427 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0098
Naslov:Računalniške strukture in sistemi

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:101007273
Naslov:Distributed Artificial Intelligent Systems
Akronim:DAIS

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:876038
Naslov:Intelligent Secure Trustable Things
Akronim:InSecTT

Nazaj