| Naslov: | Minimal surfaces with symmetries |
|---|
| Avtorji: | ID Forstnerič, Franc (Avtor) |
| Datoteke: | URL - Izvorni URL, za dostop obiščite https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/plms.12590
PDF - Predstavitvena datoteka, prenos (483,34 KB) MD5: DDCD746711142D30954B69AEDC137F4C
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
|---|
| Povzetek: | Let $G$ be a finite group acting on a connected open Riemann surface $X$ by holomorphic automorphisms and acting on a Euclidean space ${\mathbb R}^n$ $(n\ge 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a $G$-equivariant conformal minimal immersion $F:X\to{\mathbb R}^n$. We show in particular that such a map $F$ always exists if $G$ acts without fixed points on $X$. Furthermore, every finite group $G$ arises in this way for some open Riemann surface $X$ and $n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete infinite groups acting on $X$ properly discontinuously and acting on ${\mathbb R}^n$ by rigid transformations. |
|---|
| Ključne besede: | Riemann surfaces, minimal surfaces, G-equivariant conformal minimal immersion |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 01.03.2024 |
|---|
| Leto izida: | 2024 |
|---|
| Št. strani: | 32 str. |
|---|
| Številčenje: | Vol. 128, iss. 3, [article no.] e12590 |
|---|
| PID: | 20.500.12556/DiRROS-18392  |
|---|
| UDK: | 517.5 |
|---|
| ISSN pri članku: | 0024-6115 |
|---|
| DOI: | 10.1112/plms.12590  |
|---|
| COBISS.SI-ID: | 188644867  |
|---|
| Opomba: |
|
|---|
| Datum objave v DiRROS: | 13.03.2024 |
|---|
| Število ogledov: | 1018 |
|---|
| Število prenosov: | 587 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |