Naslov: | Mixed Riemann-Hilbert boundary value problem with simply connected fibers |
---|
Avtorji: | ID Černe, Miran (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0022247X23005607
PDF - Predstavitvena datoteka, prenos (467,68 KB) MD5: F3FD0AE1DB8793DE5E649ED22CB0486D
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | We study the existence of solutions of mixed Riemann-Hilbert or Cherepanov boundary value problem with simply connected fibers on the unit disk $\Delta$. Let ▫$L$▫ be a closed arc on $\partial\Delta$ with the end points $\omega_{-1}, \omega_1$ and let $a$ be a smooth function on $L$ with no zeros. Let $\{\gamma_{\xi}\}_{\xi\in\partial\Delta\setminus\mathring{L}}$ be a smooth family of smooth Jordan curves in $\mathbb C$ which all contain point $0$ in their interiors and such that $\gamma_{\omega_{-1}}$, $\gamma_{\omega_{1}}$ are strongly starshaped with respect to $0$. Then under condition that for each $w\in \gamma_{\omega_{\pm 1}}$ the angle between $w$ and the normal to $\gamma_{\omega_{\pm 1}}$ at $w$ is less than $\frac{\pi}{10}$, there exists a Hölder continuous function $f$ on $\overline{\Delta}$, holomorphic on $\Delta$, such that ${\rm Re}(\overline{a(\xi)} f(\xi)) = 0$ on $L$ and $f(\xi)\in\gamma_{\xi}$ on $\partial\Delta\setminus\mathring{L}$. |
---|
Ključne besede: | boundary value problems, mixed Riemann-Hilbert problem, Cherepanov problem |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 04.07.2023 |
---|
Leto izida: | 2024 |
---|
Št. strani: | 20 str. |
---|
Številčenje: | Vol. 529, iss. 1, art. no. 127557 |
---|
PID: | 20.500.12556/DiRROS-18182 |
---|
UDK: | 517.9 |
---|
ISSN pri članku: | 0022-247X |
---|
DOI: | 10.1016/j.jmaa.2023.127557 |
---|
COBISS.SI-ID: | 158869763 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 15.02.2024 |
---|
Število ogledov: | 484 |
---|
Število prenosov: | 221 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |