Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:MsGEN : measuring generalization of nutrient value prediction across different recipe datasets
Avtorji:ID Ispirova, Gordana, Institut Jožef Stefan (Avtor)
ID Eftimov, Tome, Institut Jožef Stefan (Avtor)
ID Džeroski, Sašo, Institut Jožef Stefan (Avtor)
ID Koroušić-Seljak, Barbara, Institut Jožef Stefan (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0957417423020092?via%3Dihub
 
.pdf PDF - Predstavitvena datoteka, prenos (3,27 MB)
MD5: 590CD5C276E2F45AADC6BCF60EF204BB
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:In this study, we estimate the generalization of the performance of previously proposed predictive models for nutrient value prediction across different recipe datasets. For this purpose, we introduce a quantitative indicator that determines the level of generalization of using the developed predictive model for new unseen data not presented in the training process. On a predefined corpus of recipe embeddings from six publicly available recipe datasets (i.e., projecting them in the same meta-feature vector space), we train predictive models on one of the six recipe datasets and test the models on the rest of the datasets. In parallel, we define and calculate generalizability indexes which are numbers that indicate how generalizable a predictive model is i.e., how well will a predictive model learned on one dataset perform on another one not involved in the training. The evaluation results prove the validity of these indexes – their relation with the accuracy of the predictions. Further, we define three sampling techniques for selecting representative data instances that will cover all parts from the feature space uniformly (involving data from all datasets) and further will improve the generalization of a predictive model. We train predictive models with these generalized datasets and test them on instances from the six recipe datasets that are not selected and included in the generalized datasets. The results from the evaluation of these predictive models show improvement compared to the results from the predictive models trained on one recipe dataset and tested on the others separately.
Ključne besede:ML pipeline, predictive modeling, nutrient prediction, recipe datasets
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:18.08.2023
Datum sprejetja članka:06.09.2023
Datum objave:16.09.2023
Založnik:Elsevier
Leto izida:2023
Št. strani:str. 1-40
Številčenje:Vol. , article no. 121507
Izvor:Nizozemska
PID:20.500.12556/DiRROS-17082 Novo okno
UDK:004.8
ISSN pri članku:1873-6793
DOI:10.1016/j.eswa.2023.121507 Novo okno
COBISS.SI-ID:165116419 Novo okno
Avtorske pravice:© 2023 The Authors. Published by Elsevier Ltd.
Opomba:Nasl. z nasl. zaslona; Soavtorji: Tome Eftimov, Sašo Džeroski, Barbara Koroušić Seljak; Opis vira z dne 20. 9. 2023;
Datum objave v DiRROS:25.09.2023
Število ogledov:724
Število prenosov:365
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Expert systems with applications
Založnik:Elsevier
ISSN:1873-6793
COBISS.SI-ID:23001861 Novo okno

Gradivo je financirano iz projekta

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0098
Naslov:Računalniške strukture in sistemi

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0103
Naslov:Tehnologije znanja

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:101005259
Naslov:Communities on Food Consumer Science
Akronim:COMFOCUS

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Začetek licenciranja:16.09.2023

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:MsGEN: measuring generalization of nutrient value prediction across different recipe datasets
Ključne besede:strojno učenje


Nazaj