Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Optimal sensor set for decoding motor imagery from EEG
Avtorji:ID Dillen, Arnau (Avtor)
ID Ghaffari, Fakhreddine (Avtor)
ID Romain, Olivier (Avtor)
ID Vanderborght, Bram (Avtor)
ID Marušič, Uroš (Avtor)
ID Grosprêtre, Sidney (Avtor)
ID Nowé, Ann (Avtor)
ID Meeusen, Romain (Avtor)
ID De Pauw, Kevin (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://doi.org/10.3390/app13074438
 
.pdf PDF - Predstavitvena datoteka, prenos (670,67 KB)
MD5: 7D3288A00BE427365C887AB0134A46F8
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo ZRS Koper - Znanstveno-raziskovalno središče Koper / Centro di Ricerche Scientifiche Capodistria
Povzetek:Brain–computer interfaces (BCIs) have the potential to enable individuals to interact with devices by detecting their intention from brain activity. A common approach to BCI is to decode movement intention from motor imagery (MI), the mental representation of an overt action. However, research-grade electroencephalogram (EEG) acquisition devices with a high number of sensors are typically necessary to achieve the spatial resolution required for reliable analysis. This entails high monetary and computational costs that make these approaches impractical for everyday use. This study investigates the trade-off between accuracy and complexity when decoding MI from fewer EEG sensors. Data were acquired from 15 healthy participants performing MI with a 64-channel research-grade EEG device. After performing a quality assessment by identifying visually evoked potentials, several decoding pipelines were trained on these data using different subsets of electrode locations. No significant differences (p = [0.18–0.91]) in the average decoding accuracy were found when using a reduced number of sensors. Therefore, decoding MI from a limited number of sensors is feasible. Hence, using commercial sensor devices for this purpose should be attainable, reducing both monetary and computational costs for BCI control.
Ključne besede:brain-computer interface, motor imagery, feature reduction, electroencephalogram, machine learning
Datum sprejetja članka:29.03.2023
Datum objave:31.03.2023
Leto izida:2023
Št. strani:15 str.
Številčenje:Vol. 13, iss. 7, [article no.] 4438
PID:20.500.12556/DiRROS-16427 Novo okno
UDK:616.8-073.97:796.012
ISSN pri članku:2076-3417
DOI:10.3390/app13074438 Novo okno
COBISS.SI-ID:147627523 Novo okno
Avtorske pravice:© 2023 by the authors.
Opomba:Nasl. z nasl. zaslona; Soavtorji: Fakhreddine Ghaffari, Olivier Romain, Bram Vanderborght, Uros Marusic, Sidney Grosprêtre, Ann Nowé, Romain Meeusen, Kevin De Pauw; Opis vira z dne 3. 4. 2023;
Datum objave v DiRROS:03.04.2023
Število ogledov:842
Število prenosov:395
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Applied sciences
Skrajšan naslov:Appl. sci.
Založnik:MDPI
ISSN:2076-3417
COBISS.SI-ID:522979353 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:31.03.2023

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:vmesnik možgani-računalniki, gibalne predstave


Nazaj