Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (surface spectroscopy) .

1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Advanced method for efficient functionalization of polymers by intermediate free-radical formation with vacuum-ultraviolet radiation and producing superhydrophilic surfaces
Alenka Vesel, Rok Zaplotnik, Miran Mozetič, Nina Recek, 2023, izvirni znanstveni članek

Povzetek: An efficient approach for tailoring surface properties of polymers is presented, which enables rapid modification leading to superhydrophilic properties. The approach is based on vacuum-ultraviolet radiation (VUV) pretreatment of the surface to create reactive dangling bonds. This step is followed by a second treatment using neutral oxygen atoms that react with the dangling bonds and form functional groups. The beneficial effect of VUV pretreatment for enhanced functionalization was clearly demonstrated by comparing VUV pretreatment in plasmas created in different gases, i.e., hydrogen, nitrogen, and oxygen, which differ in the intensity of VUV/UV radiation. The emission intensity of VUV radiation for all gases was measured by vacuum ultraviolet spectroscopy. It was shown that VUV has a strong influence on the treatment time and final surface wettability. A superhydrophilic surface was obtained only if using VUV pretreatment. Furthermore, the treatment time was significantly reduced to only a second of treatment. These findings show that such an approach may be used to enhance the surface reaction efficiency for further grafting of chemical groups.
Ključne besede: plasma treatment, vacuum-ultraviolet radiation treatment, surface functionalization, polymer polyvinyl chloride, vacuum-ultraviolet spectroscopy, vacuum-ultraviolet photons
Objavljeno v DiRROS: 06.06.2023; Ogledov: 378; Prenosov: 192
.pdf Celotno besedilo (4,42 MB)
Gradivo ima več datotek! Več...

2.
Properties of the fluoroacrylate and methacryloxypropyl-trimethoxysilane applied to a layer of Cu2O on bronze as either single or multi-component coatings
Luka Škrlep, Tadeja Kosec, Matjaž Finšgar, Andrijana Sever Škapin, Erika Švara Fabjan, 2023, izvirni znanstveni članek

Povzetek: Various coatings have been developed and explored to protect bronze surfaces against the uncontrolled formation of different corrosion products when exposed to outdoor environments. In this research, the surfaces of artificially-formed oxidized bronze patinas (OB), consisting of Cu2O, were covered with either a single-component (fluoroacrylate, FA or methacryloxypropyl-trimethoxysilane, MS) or multi-component (a mixture of FA and MS, FA-MS) fluoropolymer coating and investigated. Variations in the concentration of each component in the coating were studied. Electrochemical tests were performed to determine the corrosion protection efficiency, followed by detailed surface analyses of the OBs, both uncoated and covered with single and multi-component coatings. A variety of investigative methods were used, including focused ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The coating made from a combination of FA and MS resulted in a very high protection efficiency. Despite the increased hydrophilicity of the single MS component, however, it was shown to efficiently protect the oxidized bronze surface. The FA-MS systems showed high hydrophobicity, but no improvement was measured in the efficiency of the corrosion protection when it was compared to the coating that contained 10% MS. According to XPS and ToF-SIMS imaging, the FA component of the FA-MS coating was not present only on the uppermost surface of the coating but throughout the whole coating, which could affect its corrosion protection efficiency.
Ključne besede: bronze, Cu2O layer on bronze, fluoropolymer coating, protection efficiency, surface spectroscopy
Objavljeno v DiRROS: 30.05.2023; Ogledov: 334; Prenosov: 178
.pdf Celotno besedilo (8,49 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.22 sek.
Na vrh