Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (polyharmonic splines) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Assessment of local radial basis function collocation method for diffusion problems structured with multiquadrics and polyharmonic splines
Izaz Ali, Umut Hanoglu, Robert Vertnik, Božidar Šarler, 2024, izvirni znanstveni članek

Povzetek: This paper aims to systematically assess the local radial basis function collocation method, structured with multiquadrics (MQs) and polyharmonic splines (PHSs), for solving steady and transient diffusion problems. The boundary value test involves a rectangle with Dirichlet, Neuman, and Robin boundary conditions, and the initial value test is associated with the Dirichlet jump problem on a square. The spectra of the free parameters of the method, i.e., node density, timestep, shape parameter, etc., are analyzed in terms of the average error. It is found that the use of MQs is less stable compared to PHSs for irregular node arrangements. For MQs, the most suitable shape parameter is determined for multiple cases. The relationship of the shape parameter with the total number of nodes, average error, node scattering factor, and the number of nodes in the local subdomain is also provided. For regular node arrangements, MQs produce slightly more accurate results, while for irregular node arrangements, PHSs provide higher accuracy than MQs. PHSs are recommended for use in diffusion problems that require irregular node spacing.
Ključne besede: meshless method, polyharmonic splines, multiquadrics, augmentation, heat diffusion equation
Objavljeno v DiRROS: 04.04.2024; Ogledov: 77; Prenosov: 34
.pdf Celotno besedilo (2,79 MB)
Gradivo ima več datotek! Več...

2.
A hybrid radial basis function-finite difference method for modelling two-dimensional thermo-elasto-plasticity, Part 1 : method formulation and testing
Gašper Vuga, Boštjan Mavrič, Božidar Šarler, 2024, izvirni znanstveni članek

Povzetek: A hybrid version of the strong form meshless Radial Basis Function-Finite Difference (RBF-FD) method is introduced for solving thermo-mechanics. The thermal model is spatially discretised with RBF-FD, where trial functions are polyharmonic splines augmented with polynomials. For time discretisation, the explicit Euler method is employed. An extension of RBF-FD, the hybrid RBF-FD, is introduced for solving mechanical problems. The model is one-way coupled, where temperature affects displacements. The thermo-elastoplastic material response is considered where the stress field is generally non-smooth. The hybrid RBF-FD, where the finite difference method is used to discretise the divergence operator from the balance equation, is shown to be successful when dealing with such problems. The mechanical model is introduced in a plane strain and in a generalised plane strain (GPS) assumption. For the first time, this work presents a strong form RBF-FD for GPS problems subjected to integral form constraints. The proposed method is assessed regarding h-convergence and accuracy on the benchmark with heating an elastoplastic square. It is proven to be successful at solving one-way coupled thermo-elastoplastic problems. The proposed novel meshless approach is efficient, accurate, and robust. Its use in an industrial situation is provided in Part 2 of this paper.
Ključne besede: thermo-mechanical modelling, von Mises small strain plasticity, hybrid radial basis function generated finite differences, polyharmonic splines
Objavljeno v DiRROS: 28.02.2024; Ogledov: 124; Prenosov: 67
.pdf Celotno besedilo (2,69 MB)
Gradivo ima več datotek! Več...

3.
An improved local radial basis function method for solving small-strain elasto-plasticity
Gašper Vuga, Boštjan Mavrič, Božidar Šarler, 2024, izvirni znanstveni članek

Povzetek: Strong-form meshless methods received much attention in recent years and are being extensively researched and applied to a wide range of problems in science and engineering. However, the solution of elasto-plastic problems has proven to be elusive because of often non-smooth constitutive relations between stress and strain. The novelty in tackling them is the introduction of virtual finite difference stencils to formulate a hybrid radial basis function generated finite difference (RBF-FD) method, which is used to solve small-strain von Mises elasto-plasticity for the first time by this original approach. The paper further contrasts the new method to two alternative legacy RBF-FD approaches, which fail when applied to this class of problems. The three approaches differ in the discretization of the divergence operator found in the balance equation that acts on the non-smooth stress field. Additionally, an innovative stabilization technique is employed to stabilize boundary conditions and is shown to be essential for any of the approaches to converge successfully. Approaches are assessed on elastic and elasto-plastic benchmarks where admissible ranges of newly introduced free parameters are studied regarding stability, accuracy, and convergence rate.
Ključne besede: Von Mises elasto-plasticity, radial basis function, finite differences, polyharmonic splines, two dimensions, hybrid discretization
Objavljeno v DiRROS: 28.02.2024; Ogledov: 121; Prenosov: 64
.pdf Celotno besedilo (5,24 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.12 sek.
Na vrh