Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (mechanical) .

11 - 20 / 45
Na začetekNa prejšnjo stran12345Na naslednjo stranNa konec
11.
Thermal insulation and flammability of composite waste polyurethane foam encapsulated in geopolymer for sustainable building envelope
Barbara Horvat, Nataša Knez, Uroš Hribar, Jakob Koenig, Branka Mušič, 2024, izvirni znanstveni članek

Povzetek: Polyurethane foam (PUR) is a lightweight, thermally insulating, widely used, and highly flammable material that has after its use an adverse effect on the environment, i.e., PUR disposal is considered hazardous. Its flammability can be mitigated using various fire retardants, but they do not change the hazardous nature of waste PUR. Therefore, in the current study, waste PUR with and without flame retardants based on N and P was incorporated into a geopolymer, the alkali-activated material (AAM) based solely on metakaolin, to evaluate the potential recycling route of waste PUR while taking into account its flammability, so it can enter safely into the circular economy through the building industry. To enhance the mechanical properties of the composite, a fresh mixture was irradiated with microwaves. However, the irradiation of geopolymer containing PUR negatively influenced mechanical performance, which led to the evaluation of the behaviour of the complex dielectric constant of PUR and fire retardants. Materials and composites were evaluated regarding their chemistry, mineralogy, microstructure, and porosity to connect the structure with extrinsic properties like geometrical density, thermal conductivity, and fire properties. Nonetheless, positive influences of PUR being encapsulated in the geopolymer were lowered density (from 1.8 to 1.6 kg/l) and improved thermal insulation ability (from 940 to 860 mW/(m·K)) of the composites: with the inclusion of <5 % of PUR, thermal insulation improved by nearly 10 %. However, the contribution of PUR to the composite originated from its skeleton, which has more than 15 times bigger geometrical density (0.81 kg/l) compared to the density of the skeleton (0.047 kg/l). This offers an open field for further advancements of thermal properties, but would also lead to a decrease of the compressive strength, which was already lowered from 90 MPa for 30 % with <5 % of added grated PUR. Furthermore, the flammable nature of PUR and its other drawbacks can be controlled by permanent embedding in the noncombustible structure of geopolymer, making the envelope of sustainable buildings green and safer. Overall, including grated waste PUR in geopolymer represents a promising, easy, cost-effective recycling path with low energy consumption, where the composite cannot develop fire on a scale of pure PUR, even in the worst-case scenario, but only if the composite is designed in a way, that flammable materials cannot join flames during their combustion. This paper gives prospects to other flammable waste materials to be safely used in the circular economy, and to porous materials to shape properties of the composite by their intrinsic and/or extrinsic properties.
Ključne besede: waste polyurethane foam, polymeric flame retardants, alkali activated material, metakaolin, microwave irradiation, thermal-fire behaviour, mechanical strength
Objavljeno v DiRROS: 01.03.2024; Ogledov: 410; Prenosov: 543
.pdf Celotno besedilo (29,74 MB)
Gradivo ima več datotek! Več...

12.
A hybrid radial basis function-finite difference method for modelling two-dimensional thermo-elasto-plasticity : Application to cooling of hot-rolled steel bars on a cooling bed
Gašper Vuga, Boštjan Mavrič, Umut Hanoglu, Božidar Šarler, 2024, izvirni znanstveni članek

Povzetek: This paper represents Part 2 of the parallel paper Part 1, where the strong form hybrid RBF-FD method was developed for solving thermo-elasto-plastic problems. It addresses the industrial application of this novel meshless method to steel bars cooling on a cooling bed (CB) where the formation of residual stress is of primary interest. The study investigates the impact of the distance between the bars and the distance to the heat shield above the CB on radiative heat fluxes and, consequently, on thermo-mechanical response. The thermal model is solved on bars cross-section with a RBF-FD method where augmented polyharmonic splines are used for the local approximation. View factors, computed with a Monte-Carlo method, are included in radiative heat fluxes. The thermal solution is incrementally applied on a mechanical model that assumes a generalised plane strain state and captures bars bending. The study employs a hybrid RBF-FD method to resolve a nonlinear discontinuous mechanical problem successfully. The simulation of the process shows how different process parameters influence the thermo-mechanical response of the bars.
Ključne besede: steel bars, cooling bed, thermo-mechanical modelling, hybrid radial basis function, generated finite differences, residual stresses
Objavljeno v DiRROS: 28.02.2024; Ogledov: 143; Prenosov: 104
.pdf Celotno besedilo (8,55 MB)
Gradivo ima več datotek! Več...

13.
A hybrid radial basis function-finite difference method for modelling two-dimensional thermo-elasto-plasticity, Part 1 : method formulation and testing
Gašper Vuga, Boštjan Mavrič, Božidar Šarler, 2024, izvirni znanstveni članek

Povzetek: A hybrid version of the strong form meshless Radial Basis Function-Finite Difference (RBF-FD) method is introduced for solving thermo-mechanics. The thermal model is spatially discretised with RBF-FD, where trial functions are polyharmonic splines augmented with polynomials. For time discretisation, the explicit Euler method is employed. An extension of RBF-FD, the hybrid RBF-FD, is introduced for solving mechanical problems. The model is one-way coupled, where temperature affects displacements. The thermo-elastoplastic material response is considered where the stress field is generally non-smooth. The hybrid RBF-FD, where the finite difference method is used to discretise the divergence operator from the balance equation, is shown to be successful when dealing with such problems. The mechanical model is introduced in a plane strain and in a generalised plane strain (GPS) assumption. For the first time, this work presents a strong form RBF-FD for GPS problems subjected to integral form constraints. The proposed method is assessed regarding h-convergence and accuracy on the benchmark with heating an elastoplastic square. It is proven to be successful at solving one-way coupled thermo-elastoplastic problems. The proposed novel meshless approach is efficient, accurate, and robust. Its use in an industrial situation is provided in Part 2 of this paper.
Ključne besede: thermo-mechanical modelling, von Mises small strain plasticity, hybrid radial basis function generated finite differences, polyharmonic splines
Objavljeno v DiRROS: 28.02.2024; Ogledov: 151; Prenosov: 88
.pdf Celotno besedilo (2,69 MB)
Gradivo ima več datotek! Več...

14.
PUR in geopolymer
Barbara Horvat, Nataša Knez, Uroš Hribar, Jakob Koenig, Branka Mušič, 2024, zaključena znanstvena zbirka raziskovalnih podatkov

Povzetek: The dataset supports the results shown in the tables and figures in the article entitled “Thermal insulation and flammability of composite waste polyurethane foam encapsulated in geopolymer for sustainable building envelope” (doi: 10.1016/j.jclepro.2024.141387). It contains measurements of fire-behaviour characteristics, thermal conductivity, the behaviour of the material in the electromagnetic field in relation to the frequency, mechanical and structural evaluation, as well as chemical and mineralogical analysis.
Ključne besede: measurements, waste polyurethane foam, polymeric flame retardants, alkali activated material, metakaolin, microwave irradiation, thermal-fire behaviour, mechanical strength
Objavljeno v DiRROS: 20.02.2024; Ogledov: 299; Prenosov: 175
.xlsx Raziskovalni podatki (2,51 MB)
Gradivo je zbirka in zajema 1 gradivo!

15.
Material properties of high-strength high chromium TWIP steel with increased corrosion resistance
Pavel Podaný, Tomáš Studecký, Aleksandra Kocijan, 2023, izvirni znanstveni članek

Ključne besede: TWIP, steels, microstructure, mechanical properties, corrosion
Objavljeno v DiRROS: 02.02.2024; Ogledov: 268; Prenosov: 109
.pdf Celotno besedilo (448,19 KB)
Gradivo ima več datotek! Več...

16.
17.
18.
19.
20.
Iskanje izvedeno v 0.31 sek.
Na vrh