Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (intumescent coatings) .

1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Modelling intumescent coatings for the fire protection of structural systems : a review
Andrea Lucherini, Donatella de Silva, 2024, pregledni znanstveni članek

Povzetek: Purpose Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review. Design/methodology/approach Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity. Findings The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs. Research limitations/implications Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems. Originality/value The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.
Ključne besede: intumescent coatings, fire protection, modelling, structural fire engineering, fire safety, performance-based design
Objavljeno v DiRROS: 17.04.2024; Ogledov: 103; Prenosov: 35
.pdf Celotno besedilo (790,21 KB)
Gradivo ima več datotek! Več...

2.
Numerical heat transfer model for swelling intumescent coatings during heating
Andrea Lucherini, Juan P. Hidalgo, Jose L. Torero, Cristian Maluk, 2023, izvirni znanstveni članek

Povzetek: This research study presents a heat transfer model aimed at estimating the thermal and physical response of intumescent coatings. The numerical model is inspired by the outcomes of an experimental study focused on analysing the insulating effectiveness of a commercial intumescent coating for a range of heating conditions and initial coating thickness. The model solves the one-dimensional heat conduction problem using the finite-difference Crank-Nicolson method, and it assumes that the effectiveness of intumescent coatings is mainly dependent on their ability to develop swelled porous char. The coating swelling is implemented in the model by adopting an approach based on expanding the mesh representing the physical domain in proximity to the substrate-coating interface. The model described herein offers researchers and engineers a tool to estimate the heat transfer of swelling intumescent coatings (i.e. in-depth thermal gradient). Outcomes of the analysis shown herein demonstrate that the heat conduction within intumescent coatings is governed by the physical coating swelling and the thermal conditions at the coating-substrate interface. The numerical model shows that its accuracy is highly influenced by the coating thickness ahead of the reaction zone. Consequently, the coating swelling rate plays a key role, while the thermo-physical properties of the intumescent coating have a secondary effect. According to its assumptions, the model defines a quasi-steady-state thermal problem: it is more accurate for conditions close to steady-state (e.g. high heat fluxes), but it loses accuracy for cases characterised by transient phenomena (e.g. phases prior to the onset of swelling and low heat fluxes).
Ključne besede: intumescent coatings, heat transfer, numerical model, swelling, fire safety
Objavljeno v DiRROS: 08.01.2024; Ogledov: 179; Prenosov: 34
.pdf Celotno besedilo (1,21 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 2.19 sek.
Na vrh