Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Maria Chiara Bignozzi) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
B-IMPACT project : eco-friendly and non-hazardous coatings for the protection of outdoor bronzes
Giulia Masi, Maëlenn Aufray, A. Balbo, E. Bernardi, Maria Chiara Bignozzi, Cristina Chiavari, J. Esvan, Nina Gartner, V. Grassi, Claudie Josse, Tadeja Kosec, Carla Martini, Cecilia Monticelli, Luka Škrlep, W. Sperotto, Erika Švara Fabjan, E. Tedesco, F. Zanotto, Luc Robbiola, 2020, objavljeni znanstveni prispevek na konferenci

Povzetek: Application of protective coatings is the most widely used conservation treatment for outdoor bronzes. Eco-friendly and non-hazardous coatings are currently needed for conservation of outdoor bronze monuments. To fulfil this need, the M-ERA.NET European research project B-IMPACT (Bronze-IMproved non-hazardous PAtina CoaTings) aimed at assessing the protectiveness of innovative coatings for historical and modern bronze monuments exposed outdoors. In this project, two bronze substrates (historical Cu-Sn-Zn-Pb and modern Cu-Si-Mn alloys) were artificially patinated, by acid rain solution using dropping test and by "liver of sulphur" procedure (K2S aqueous solution) to obtain black patina, respectively. Subsequently, the application of several newly developed protective coatings was carried out and their performance was investigated by preliminary electrochemical tests. In the following steps of the work, the assessment of the best-performing coatings was carried out and their performance was compared to Incralac, one of the most widely used protective coatings in conservation practice. A multi-analytical approach was adopted, considering artificial ageing (carried out in representative conditions, including exposure to rain runoff, stagnant rain and UV radiation) and metal release, as well as visual aspect (so as to include aesthetical impact among the coating selection parameters) and morphological and structural evolution of the coated surfaces due to simulated outdoor exposure. Lastly, also the health impact of selected coatings was assessed by occupational hazard tests. The removability and re-applicability of the best-performing coatings were also assessed. The best alternatives to the conventional Incralac exhibited were: (i) fluoroacrylate blended with methacryloxy-propyl-trimethoxy-silane (FA-MS) applied on patinated Cu-Sn-Zn-Pb bronze and (ii) 3-mercapto-propyl-trimethoxysilane (PropS-SH) applied on patinated Cu-Si-Mn bronze.
Ključne besede: bronze, patina, protective coatings, eco-friendly, corrosion, aging
Objavljeno v DiRROS: 01.03.2024; Ogledov: 131; Prenosov: 69
.pdf Celotno besedilo (2,01 MB)
Gradivo ima več datotek! Več...

2.
RILEM TC 247-DTA round robin test : sulfate resistance, alkali-silica reaction and freeze-thaw resistance of alkali-activated concretes
Frank Winnefeld, Gregor J. G. Gluth, Susana Bernal, Maria Chiara Bignozzi, Lorenza Carabba, Sundararaman Chithiraputhiran, Alireza Dehghan, Sabina Dolenec, Katja Dombrowski-Daube, Ashish Dubey, Vilma Ducman, Yu Jin, Karl Peterson, Stephen Dietmar, John L. Provis, 2020, izvirni znanstveni članek

Povzetek: The RILEM technical committee TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ conducted a round robin testing programme to determine the validity of various durability testing methods, originally developed for Portland cement based-concretes, for the assessment of the durability of alkali-activated concretes. The outcomes of the round robin tests evaluating sulfate resistance, alkali-silica reaction (ASR) and freeze–thaw resistance are presented in this contribution. Five different alkali-activated concretes, based on ground granulated blast furnace slag, fly ash, or metakaolin were investigated. The extent of sulfate damage to concretes based on slag or fly ash seems to be limited when exposed to an Na2SO4 solution. The mixture based on metakaolin showed an excessive, very early expansion, followed by a dimensionally stable period, which cannot be explained at present. In the slag-based concretes, MgSO4 caused more expansion and visual damage than Na2SO4; however, the expansion limits defined in the respective standards were not exceeded. Both the ASTM C1293 and RILEM AAR-3.1 test methods for the determination of ASR expansion appear to give essentially reliable identification of expansion caused by highly reactive aggregates. Alkali-activated materials in combination with an unreactive or potentially expansive aggregate were in no case seen to cause larger expansions; only the aggregates of known very high reactivity were seen to be problematic. The results of freeze–thaw testing (with/without deicing salts) of alkali-activated concretes suggest an important influence of the curing conditions and experimental conditions on the test outcomes, which need to be understood before the tests can be reliably applied and interpreted.
Ključne besede: alkali-activated materials/geopolymers, sulphate resistance, alkali silica reactivity, freeze-thaw resistance, Rilem TC
Objavljeno v DiRROS: 17.08.2023; Ogledov: 225; Prenosov: 163
.pdf Celotno besedilo (560,56 KB)
Gradivo ima več datotek! Več...

3.
Application of electrochemical methods for studying steel corrosion in alkali-activated materials
Shishir Mundra, Gabriel Samson, Giulia Masi, Rebecca Achenbach, David M. Bastidas, Susana Bernal, Maria Chiara Bignozzi, Maria Criado, Martin Cyr, Nina Gartner, Stefanie von Greve‐Dierfeld, Andraž Legat, Nikoonasab Ali, John L. Provis, Michael Raupach, Gregor J. G. Gluth, 2023, izvirni znanstveni članek

Povzetek: Alkali‐activated materials (AAMs) are binders that can complement and partially substitute the current use of conventional cement. However, the present knowledge about how AAMs protect steel reinforcement in concrete elements is incomplete, and uncertainties exist regarding the application of electrochemical methods to investigate this issue. The present review by EFC WP11‐Task Force ‘Corrosion of steel in alkali‐activated materials’ demonstrates that important differences exist between AAMs and Portland cement, and between different classes of AAMs, which are mainly caused by differing pore solution compositions, and which affect the outcomes of electrochemical measurements. The high sulfide concentrations in blast furnace slag‐based AAMs lead to distinct anodic polarisation curves, unusually low open circuit potentials, and low polarisation resistances, which might be incorrectly interpreted as indicating active corrosion of steel reinforcement. No systematic study of the influence of the steel–concrete interface on the susceptibility of steel to corrosion in AAMs is available. Less common electrochemical methods present an opportunity for future progress in the field.
Ključne besede: alkali-aktivated materials, alkali‐activated materials, anodic/cathodic polarisation, concrete, linear polarisation resistance, open circuit potential, reinforcement corrosion, resistivity
Objavljeno v DiRROS: 29.05.2023; Ogledov: 286; Prenosov: 125
URL Povezava na datoteko
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.09 sek.
Na vrh