Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:N-Beats architecture for explainable forecasting of multi-dimensional poultry data
Avtorji:ID Kaur, Baljinder (Avtor)
ID Rakhra, Manik (Avtor)
ID Sharma, Nonita (Avtor)
ID Prashar, Deepak (Avtor)
ID Mršić, Leo (Avtor)
ID Khan, Arfat Ahmad (Avtor)
ID Kadry, Seifedine (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0320979
 
.pdf PDF - Predstavitvena datoteka, prenos (1,63 MB)
MD5: A6246FB7FE3238E1B645229D9D6799B3
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo RUDOLFOVO - Rudolfovo – Znanstveno in tehnološko središče Novo mesto
Povzetek:The agricultural economy heavily relies on poultry production, making accurate forecasting of poultry data crucial for optimizing revenue, streamlining resource utilization, and maximizing productivity. This research introduces a novel application of the N-BEATS architecture for multi-dimensional poultry data forecasting with enhanced interpretability through an integrated Explainable AI (XAI) framework. Leveraging its advanced capabilities in time series modeling, N-BEATS is applied to predict multiple facets of poultry disease diagnostics using a multivariate dataset comprising key environmental parameters. The methodology empowers decision-making in poultry farm management by providing transparent and interpretable forecasts. Experimental results demonstrate that N-BEATS outperforms conventional deep learning models, including LSTM, GRU, RNN, and CNN, across various error metrics, achieving MAE of 0.172, RMSE of 0.313, MSLE of 0.042, R-squared of 0.034, and RMSLE of 0.204. The positive R-squared value indicates the model’s robustness against underfitting and overfitting, surpassing the performance of other models with negative R-squared values. This study establishes N-BEATS as a superior and interpretable solution for complex, multi-dimensional forecasting challenges in poultry production, with significant implications for enhancing predictive analytics in agriculture.
Ključne besede:poultry, livestock, forecasting, epidemiology, humidity, veterinary diseases, polynomials
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:24.04.2025
Založnik:Public Library of Science
Leto izida:2025
Št. strani:str. 1-19
Številčenje:Vol. 20, iss. 4
PID:20.500.12556/DiRROS-22649 Novo okno
UDK:519.87:004.92:636.52
ISSN pri članku:1932-6203
DOI:10.1371/journal.pone.0320979 Novo okno
COBISS.SI-ID:239347459 Novo okno
Avtorske pravice:© 2025 Kaur et al.
Opomba:Soavtorji: Manik Rakhra, Nonita Sharma, Deepak Prashar, Leo Mrsic, Arfat Ahmad Khan, Seifedine Kadry; Nasl. z nasl. zaslona; Opis vira z dne 13. 6. 2024;
Datum objave v DiRROS:09.09.2025
Število ogledov:276
Število prenosov:109
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:PloS one
Založnik:Public Library of Science
ISSN:1932-6203
COBISS.SI-ID:2005896 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:perutnina, živina, napovedovanje, globoko učenje, epidemiologija, veterinarske bolezni, polinomi


Nazaj