| Title: | Generalized derivations of current Lie algebras |
|---|
| Authors: | ID Benkovič, Dominik (Author) ID Eremita, Daniel (Author) |
| Files: | PDF - Presentation file, download (1,08 MB) MD5: 08FE9487EDC22BBBD56569EE413A0F82
URL - Source URL, visit https://www.tandfonline.com/doi/full/10.1080/00927872.2024.2354423
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
|---|
| Abstract: | Let $L$ be a Lie algebra and let $A$ be an associative commutative algebra with unity, both over the same field $F$. We consider the following question. Is every generalized derivation (resp. quasiderivation) of $L \otimes A$ the sum of a derivation and a map from the centroid of $L \otimes A$, if the same holds true for $L$? |
|---|
| Keywords: | current Lie algebras, derivation, generalized derivation, Lie algebras, quasiderivation, tensor product of algebras |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 01.01.2024 |
|---|
| Year of publishing: | 2024 |
|---|
| Number of pages: | str. 4603-4611 |
|---|
| Numbering: | Vol. 52, iss. 11 |
|---|
| PID: | 20.500.12556/DiRROS-21802  |
|---|
| UDC: | 512 |
|---|
| ISSN on article: | 0092-7872 |
|---|
| DOI: | 10.1080/00927872.2024.2354423  |
|---|
| COBISS.SI-ID: | 200554755  |
|---|
| Publication date in DiRROS: | 31.03.2025 |
|---|
| Views: | 570 |
|---|
| Downloads: | 400 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |