Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Computational methods for detecting insect vibrational signals in field vibroscape recordings
Avtorji:ID Marolt, Matija (Avtor)
ID Pesek, Matevž (Avtor)
ID Šturm, Rok (Avtor)
ID López Díez, Juan José (Avtor)
ID Rexhepi, Behare (Avtor)
ID Virant-Doberlet, Meta (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://doi.org/10.1016/j.ecoinf.2025.103003
 
.pdf PDF - Predstavitvena datoteka, prenos (3,46 MB)
MD5: 7D2C956DAB368BEB63B3E0E38FAAF7E7
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo NIB - Nacionalni inštitut za biologijo
Povzetek:The ecological significance of vibroscape has been largely overlooked, excluding an important part of the available information from ecosystem assessment. Insects rely primarily on substrate-borne vibrational signalling in their communication, which is why the majority of terrestrial insects are excluded from passive acoustic monitoring. The ability to monitor the biological component of the natural vibroscape has been limited due to a lack of data and methods to analyse the data. In this paper, we evaluate the use of deep learning models to automatically detect and classify vibrational signals from field recordings obtained with laser vibrometry. We created a dataset of annotated vibroscape recordings of meadow habitats, containing vibrational signals categorized as pulses, harmonic signals, pulse trains, and complex signals. We compared different deep neural network architectures for the detection and classification of vibrational signals, including convolutional and transformer models. The PaSST transformer architecture, which was fine-tuned from a pre-trained checkpoint demonstrated the highest performance on all tasks, achieving an average precision of 0.79 in signal detection. For signals with more than one hour of annotated data, the classification models achieved instance-based F1-scores above 0.8, enabling automatic analysis of activity patterns. In our case study, where 24-hour field recordings were analysed, the trained models (even those with lower precision) revealed interesting activity patterns of different species. The presented study, together with the dataset we publish with this paper, lays the foundation for further analysis of the vibroscape and the development of automated methods for ecotremological monitoring that complement passive acoustic monitoring and provide a comprehensive approach to ecosystem assessment.
Ključne besede:vibroscape, ecotremology, deep learning, automatic classification, biotremology, insects, zoology, laser vibrometry, ecosystem assessment
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:01.05.2025
Leto izida:2025
Št. strani:str. 1-10
Številčenje:Vol. 86, [art. no.] ǂ103003
PID:20.500.12556/DiRROS-21258 Novo okno
UDK:591
ISSN pri članku:1878-0512
DOI:10.1016/j.ecoinf.2025.103003 Novo okno
COBISS.SI-ID:223198211 Novo okno
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 21. 1. 2025; Soavtorji: Matevž Pesek, Rok Šturm, Juan José López Díez, Behare Rexhepi, Meta Virant-Doberlet;
Datum objave v DiRROS:21.01.2025
Število ogledov:626
Število prenosov:341
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Ecological informatics
Založnik:Elsevier B.V.
ISSN:1878-0512
COBISS.SI-ID:62725635 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J1-3016-2021
Naslov:Vibracijska krajina: odkrivanje prezrtega sveta vibracijske komunikacije

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P1-0255-2017
Naslov:Združbe, interakcije in komunikacije v ekosistemih

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:Z1-50018-2023
Naslov:Ekotremologija - Vpogled v biodiverziteto in interakcije znotraj vibracijske združbe

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:vibracijska krajina, ekotremologija, globoko učenje, avtomatska klasifikacija, biotremologija, žuželke, zoologija, laserska vibrometrija, ocena ekosistema


Nazaj