Naslov: | Amino acid sequence encodes protein abundance shaped by protein stability at reduced synthesis cost |
---|
Avtorji: | ID Buric, Filip (Avtor) ID Viknander, Sandra (Avtor) ID Fu, Xiaozhi (Avtor) ID Lemke, Oliver (Avtor) ID Carmona, Oriol Gracia (Avtor) ID Zrimec, Jan (Avtor) ID Szyrwiel, Lukasz (Avtor) ID Mülleder, Michael (Avtor) ID Ralser, Markus (Avtor) ID Zelezniak, Aleksej (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://doi.org/10.1002/pro.5239
PDF - Predstavitvena datoteka, prenos (13,19 MB) MD5: BF2CD3C7F05973F92D16F29719D6C4AC
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | NIB - Nacionalni inštitut za biologijo
|
---|
Povzetek: | Understanding what drives protein abundance is essential to biology, medicine, and biotechnology. Driven by evolutionary selection, an amino acid sequence is tailored to meet the required abundance of a proteome, underscoring the intricate relationship between sequence and functional demand. Yet, the specific role of amino acid sequences in determining proteome abundance remains elusive. Here we show that the amino acid sequence alone encodes over half of protein abundance variation across all domains of life, ranging from bacteria to mouse and human. With an attempt to go beyond predictions, we trained a manageable-size Transformer model to interpret latent factors predictive of protein abundances. Intuitively, the model's attention focused on the protein's structural features linked to stability and metabolic costs related to protein synthesis. To probe these relationships, we introduce MGEM (Mutation Guided by an Embedded Manifold), a methodology for guiding protein abundance through sequence modifications. We find that mutations which increase predicted abundance have significantly altered protein polarity and hydrophobicity, underscoring a connection between protein structural features and abundance. Through molecular dynamics simulations we revealed that abundance-enhancing mutations possibly contribute to protein thermostability by increasing rigidity, which occurs at a lower synthesis cost. |
---|
Ključne besede: | molecular biology, biotechnology, bioinformatics, deep learning, gene expression, synthetic biology, protein abundance, amino acid sequence, evolutionary selection, transformer model, MGEM (Mutation guided by an embedded manifold) |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.01.2025 |
---|
Leto izida: | 2025 |
---|
Št. strani: | str. 1-25 |
---|
Številčenje: | iss. 1, [art. no.] ǂe5239 |
---|
PID: | 20.500.12556/DiRROS-21006 |
---|
UDK: | 577 |
---|
ISSN pri članku: | 0961-8368 |
---|
DOI: | 10.1002/pro.5239 |
---|
COBISS.SI-ID: | 219372035 |
---|
Opomba: | Soavtorji: Sandra Viknander, Xiaozhi Fu, Oliver Lemke, Oriol Gracia Carmona, Jan Zrimec, Lukasz Szyrwiel, Michael Mülleder, Markus Ralser, Aleksej Zelezniak;
|
---|
Datum objave v DiRROS: | 17.12.2024 |
---|
Število ogledov: | 26 |
---|
Število prenosov: | 11 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |