Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Eliminating crossings in ordered graphs
Avtorji:ID Agrawal, Akanksha (Avtor)
ID Cabello, Sergio (Avtor)
ID Kaufmann, Michael (Avtor)
ID Saurabh, Saket (Avtor)
ID Sharma, Roohani (Avtor)
ID Uno, Yushi (Avtor)
ID Wolff, Alexander (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (1,13 MB)
MD5: 00CD0A665B319BC8393C2DD466730936
 
URL URL - Izvorni URL, za dostop obiščite https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.1
 
Jezik:Angleški jezik
Tipologija:1.08 - Objavljeni znanstveni prispevek na konferenci
Organizacija:Logo IMFM - Inštitut za matematiko, fiziko in mehaniko
Povzetek:Drawing a graph in the plane with as few crossings as possible is one of the central problems in graph drawing and computational geometry. Another option is to remove the smallest number of vertices or edges such that the remaining graph can be drawn without crossings. We study both problems in a book-embedding setting for ordered graphs, that is, graphs with a fixed vertex order. In this setting, the vertices lie on a straight line, called the spine, in the given order, and each edge must be drawn on one of several pages of a book such that every edge has at most a fixed number of crossings. In book embeddings, there is another way to reduce or avoid crossings; namely by using more pages. The minimum number of pages needed to draw an ordered graph without any crossings is its (fixed-vertex-order) page number. We show that the page number of an ordered graph with $n$ vertices and $m$ edges can be computed in $2^m \cdot n^{{\mathcal O}(1)}$ time. An ${\mathcal O}(\log n)$-approximation of this number can be computed efficiently. We can decide in $2^{{\mathcal O}(d \sqrt{k} \log (d+k))} \cdot n^{{\mathcal O}(1)}$ time whether it suffices to delete $k$ edges of an ordered graph to obtain a $d$-planar layout (where every edge crosses at most $d$ other edges) on one page. As an additional parameter, we consider the size $h$ of a hitting set, that is, a set of points on the spine such that every edge, seen as an open interval, contains at least one of the points. For $h = 1$, we can efficiently compute the minimum number of edges whose deletion yields fixed-vertex-order page number $p$. For $h > 1$, we give an XP algorithm with respect to $h+p$. Finally, we consider spine+t-track drawings, where some but not all vertices lie on the spine. The vertex order on the spine is given; we must map every vertex that does not lie on the spine to one of $t$ tracks, each of which is a straight line on a separate page, parallel to the spine. In this setting, we can minimize in $2^n \cdot n^{{\mathcal O}(1)}$ time either the number of crossings or, if we disallow crossings, the number of tracks.
Ključne besede:ordered graphs, book embedding, edge deletion, d-planar, hitting set
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:1:1-1:19 str.
PID:20.500.12556/DiRROS-20957 Novo okno
UDK:519.17:004
DOI:10.4230/LIPIcs.SWAT.2024.1 Novo okno
COBISS.SI-ID:218342147 Novo okno
Datum objave v DiRROS:10.12.2024
Število ogledov:48
Število prenosov:27
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del monografije

Naslov:19th Scandinavian Symposium and Workshops on Algorithm Theory : SWAT 2024, June 12-14, 2024, Helsinki, Finland
Uredniki:Hans L. Bodlaender
Kraj izida:Saarbrücken/Wadern
Založnik:Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing
Leto izida:2024
ISBN:978-3-95977-318-8
COBISS.SI-ID:202480643 Novo okno
Naslov zbirke:LIPIcs - Leibniz International Proceedings in Informatics
Številčenje v zbirki:ǂvol. ǂ294
ISSN zbirke:1868-8969

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P1-0297
Naslov:Teorija grafov

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J1-2452
Naslov:Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:N1-0218
Naslov:Prepletanje geometrije, topologije in algebre v strukturni in topološki teoriji grafov

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:N1-0285
Naslov:Metrični problemi v grafih in hipergrafih

Financer:EC - European Commission
Številka projekta:101071836
Naslov:KARST: Predicting flow and transport in complex Karst systems
Akronim:KARST

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Nazaj