Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:$S$-packing colorings of distance graphs with distance sets of cardinality $2$
Authors:ID Brešar, Boštjan (Author)
ID Ferme, Jasmina (Author)
ID Holub, Přemysl (Author)
ID Jakovac, Marko (Author)
ID Melicharová, Petra (Author)
Files:.pdf PDF - Presentation file, download (771,39 KB)
MD5: 4C734DCFA049C99F55035E4590242882
 
URL URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0096300324006611
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:For a non-decreasing sequence $S=(s_1,s_2,\ldots)$ of positive integers, a partition of the vertex set of a graph $G$ into subsets $X_1,\ldots, X_\ell$, such that vertices in $X_i$ are pairwise at distance greater than $s_i$ for every $i\in\{1,\ldots,\ell\}$, is called an $S$-packing $\ell$-coloring of $G$. The minimum $\ell$ for which $G$ admits an $S$-packing $\ell$-coloring is called the $S$-packing chromatic number of $G$. In this paper, we consider $S$-packing colorings of the integer distance graphs with respect two positive integers $k$ and $t$, which are the graphs whose vertex set is $\mathbb{Z}$, and two vertices $x,y\in \mathbb{Z}$ are adjacent whenever $|x-y|\in\{k,t\}$. We complement partial results from two earlier papers, thus determining all values of the $S$-packing chromatic numbers of these distance graphs for all sequence $S$ such that $s_i\le 2$ for all $i$. In particular, if $S=(1,1,2,2,\ldots)$, then the $S$-packing chromatic number is $2$ if $k+t$ is even, and $4$ otherwise, while if $S=(1,2,2,\ldots)$, then the $S$-packing chromatic number is $5$, unless $\{k,t\}=\{2,3\}$ when it is $6$; when $S=(2,2,2,\ldots)$, the corresponding formula is more complex.
Keywords:S-packing coloring, S-packing chromatic number, distance graph, distance coloring
Publication status:Published
Publication version:Version of Record
Publication date:01.04.2025
Year of publishing:2025
Number of pages:13 str.
Numbering:Vol. 490, article no. 129200
PID:20.500.12556/DiRROS-20865 New window
UDC:519.17
ISSN on article:0096-3003
DOI:10.1016/j.amc.2024.129200 New window
COBISS.SI-ID:216160771 New window
Note:
Publication date in DiRROS:22.11.2024
Views:96
Downloads:50
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Applied mathematics and computation
Shortened title:Appl. math. comput.
Publisher:Elsevier
ISSN:0096-3003
COBISS.SI-ID:24983808 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0285
Name:Metrični problemi v grafih in hipergrafih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3002
Name:Prirejanja in barvanja povezav v kubičnih grafih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-4008
Name:Drevesno neodvisnostno število grafov

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:S-pakirno barvanje, S-pakirno kromatično število, razdaljni graf, razdaljno barvanje


Back