Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Bootstrap percolation in strong products of graphs
Avtorji:ID Brešar, Boštjan (Avtor)
ID Hedžet, Jaka (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (649,39 KB)
MD5: 0221CDEFE7DA9103CF5B6F6C2C59DC4F
 
URL URL - Izvorni URL, za dostop obiščite https://www.combinatorics.org/ojs/index.php/eljc/article/view/v31i4p35
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IMFM - Inštitut za matematiko, fiziko in mehaniko
Povzetek:Given a graph $G$ and assuming that some vertices of $G$ are infected, the $r$-neighbor bootstrap percolation rule makes an uninfected vertex $v$ infected if $v$ has at least $r$ infected neighbors. The $r$-percolation number, $m(G,r)$, of $G$ is the minimum cardinality of a set of initially infected vertices in $G$ such that after continuously performing the $r$-neighbor bootstrap percolation rule each vertex of $G$ eventually becomes infected. In this paper, we consider percolation numbers of strong products of graphs. If $G$ is the strong product $G_1\boxtimes \cdots \boxtimes G_k$ of $k$ connected graphs, we prove that $m(G,r)=r$ as soon as $r\le 2^{k-1}$ and $|V(G)|\ge r$. As a dichotomy, we present a family of strong products of $k$ connected graphs with the $(2^{k-1}+1)$-percolation number arbitrarily large. We refine these results for strong products of graphs in which at least two factors have at least three vertices. In addition, when all factors $G_i$ have at least three vertices we prove that $m(G_1 \boxtimes \dots \boxtimes G_k,r)\leq 3^{k-1} -k$ for all $r\leq 2^k-1$, and we again get a dichotomy, since there exist families of strong products of $k$ graphs such that their $2^{k}$-percolation numbers are arbitrarily large. While $m(G\boxtimes H,3)=3$ if both $G$ and $H$ have at least three vertices, we also characterize the strong prisms $G\boxtimes K_2$ for which this equality holds. Some of the results naturally extend to infinite graphs, and we briefly consider percolation numbers of strong products of two-way infinite paths.
Ključne besede:bootstrap percolation, strong product of graphs, infinite path
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:01.01.2024
Leto izida:2024
Št. strani:22 str.
Številčenje:Vol. 31, iss. 4, article no. P4.35
PID:20.500.12556/DiRROS-20844 Novo okno
UDK:519.17:519.2
ISSN pri članku:1077-8926
DOI:10.37236/11826 Novo okno
COBISS.SI-ID:215693827 Novo okno
Opomba:
Datum objave v DiRROS:20.11.2024
Število ogledov:94
Število prenosov:47
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:The Electronic journal of combinatorics
Skrajšan naslov:Electron. j. comb.
Založnik:N.J. Calkin and H.S. Wilf
ISSN:1077-8926
COBISS.SI-ID:6973785 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P1-0297
Naslov:Teorija grafov

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:N1-0285
Naslov:Metrični problemi v grafih in hipergrafih

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J1-3002
Naslov:Prirejanja in barvanja povezav v kubičnih grafih

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J1-4008
Naslov:Drevesno neodvisnostno število grafov

Licence

Licenca:CC BY-ND 4.0, Creative Commons Priznanje avtorstva-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nd/4.0/deed.sl
Opis:Licenca Creative Commons Brez predelav dovoljuje uporabnikom ponovno distribucijo dela, vendar ne v spremenjeni obliki. Zahtevana je navedba avtorstva.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:ojačano pronicanje, krepki produkt grafov, neskončna pot


Nazaj