Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Detection and localization of hyperfunctioning parathyroid glands on [18F]fluorocholine PET/CT using deep learning – model performance and comparison to human experts
Avtorji:ID Jarabek, Leon (Avtor)
ID Jamšek, Jan (Avtor)
ID Cuderman, Anka (Avtor)
ID Rep, Sebastijan (Avtor)
ID Hočevar, Marko (Avtor)
ID Kocjan, Tomaž (Avtor)
ID Jensterle Sever, Mojca (Avtor)
ID Špiclin, Žiga (Avtor)
ID Maček Ležaić, Žiga (Avtor)
ID Cvetko, Filip (Avtor)
ID Ležaič, Luka (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://www.radioloncol.com/index.php/ro/article/view/3890/5102
 
.pdf PDF - Predstavitvena datoteka, prenos (810,33 KB)
MD5: CA2F3912F4BDACE16DD712DAE332C74B
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo OI - Onkološki inštitut Ljubljana
Povzetek:In the setting of primary hyperparathyroidism (PHPT), [18F]fluorocholine PET/CT (FCH-PET) has excellent diagnostic performance, with experienced practitioners achieving 97.7% accuracy in localising hyperfunctioning parathyroid tissue (HPTT). Due to the relative triviality of the task for human readers, we explored the performance of deep learning (DL) methods for HPTT detection and localisation on FCH-PET images in the setting of PHPT. Patients and methods. We used a dataset of 93 subjects with PHPT imaged using FCH-PET, of which 74 subjects had visible HPTT while 19 controls had no visible HPTT on FCH-PET. A conventional Resnet10 as well as a novel mPETResnet10 DL model were trained and tested to detect (present, not present) and localise (upper left, lower left, upper right or lower right) HPTT. Our mPETResnet10 architecture also contained a region-of-interest masking algorithm that we evaluated qualitatively in order to try to explain the model’s decision process. Results. The models detected the presence of HPTT with an accuracy of 83% and determined the quadrant of HPTT with an accuracy of 74%. The DL methods performed statistically worse (p < 0.001) in both tasks compared to human readers, who localise HPTT with the accuracy of 97.7%. The produced region-of-interest mask, while not showing a consistent added value in the qualitative evaluation of model’s decision process, had correctly identified the foreground PET signal. Conclusions. Our experiment is the first reported use of DL analysis of FCH-PET in PHPT. We have shown that it is possible to utilize DL methods with FCH-PET to detect and localize HPTT. Given our small dataset of 93 subjects, results are nevertheless promising for further research
Ključne besede:primary hyperparathyroidism, deep learning, nuclear medicine
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:01.01.2022
Založnik:Association of Radiology and Oncology
Leto izida:2022
Št. strani:str. 440-452
Številčenje:Vol. 56, no. 4
Izvor:Ljubljana
PID:20.500.12556/DiRROS-19799 Novo okno
UDK:616.447
ISSN pri članku:1318-2099
DOI:10.2478/raon-2022-0037 Novo okno
COBISS.SI-ID:119825411 Novo okno
Avtorske pravice:by Authors
Opomba:Soavtorji: Jan Jamsek, Anka Cuderman, Sebastijan Rep, Marko Hocevar, Tomaz Kocjan, Mojca Jensterle, Ziga Spiclin, Ziga Macek Lezaic, Filip Cvetko, Luka Lezaic;
Datum objave v DiRROS:25.07.2024
Število ogledov:431
Število prenosov:156
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Radiology and oncology
Skrajšan naslov:Radiol. oncol.
Založnik:Slovenian Medical Society - Section of Radiology, Croatian Medical Association - Croatian Society of Radiology
ISSN:1318-2099
COBISS.SI-ID:32649472 Novo okno

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:primarni hiperparatoroidizem, globoko učenje, nuklearna medicina


Nazaj