Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:DINCAE 1.0 : a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations
Avtorji:ID Barth, Alexander (Avtor)
ID Alvera-Azcárate, Aida (Avtor)
ID Ličer, Matjaž (Avtor)
ID Beckers, Jean-Marie (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (3,71 MB)
MD5: 0B393E588F89F99AD9051533F0B8D5B0
 
URL URL - Izvorni URL, za dostop obiščite https://doi.org/10.5194/gmd-13-1609-2020
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo NIB - Nacionalni inštitut za biologijo
Povzetek:A method to reconstruct missing data in sea surface temperature data using a neural network is presented. Satellite observations working in the optical and infrared bands are affected by clouds, which obscure part of the ocean underneath. In this paper, a neural network with the structure of a convolutional auto-encoder is developed to reconstruct the missing data based on the available cloud-free pixels in satellite images. Contrary to standard image reconstruction with neural networks, this application requires a method to handle missing data (or data with variable accuracy) in the training phase. The present work shows a consistent approach which uses the satellite data and its expected error variance as input and provides the reconstructed field along with its expected error variance as output. The neural network is trained by maximizing the likelihood of the observed value. The approach, called DINCAE (Data INterpolating Convolutional Auto-Encoder), is applied to a 25-year time series of Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature data and compared to DINEOF (Data INterpolating Empirical Orthogonal Functions), a commonly used method to reconstruct missing data based on an EOF (empirical orthogonal function) decomposition. The reconstruction error of both approaches is computed using cross-validation and in situ observations from the World Ocean Database. DINCAE results have lower error while showing higher variability than the DINEOF reconstruction.
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:27.03.2020
Leto izida:2020
Št. strani:str. 1609-1622
Številčenje:Vol. 13, iss. 3
PID:20.500.12556/DiRROS-19510 Novo okno
UDK:004.85
ISSN pri članku:1991-959X
DOI:10.5194/gmd-13-1609-2020 Novo okno
COBISS.SI-ID:13432835 Novo okno
Datum objave v DiRROS:19.07.2024
Število ogledov:335
Število prenosov:184
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Geoscientific model development
Skrajšan naslov:Geosci. model dev.
Založnik:Copernicus Publications
ISSN:1991-959X
COBISS.SI-ID:517533209 Novo okno

Gradivo je financirano iz projekta

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Fonds de la Recherche Scientifique de Belgique

Financer:EC - European Commission
Program financ.:COST action
Številka projekta:ES1402
Naslov:Evaluation of Ocean Syntheses

Financer:Drugi - Drug financer ali več financerjev
Program financ.:FNRS, Fonds de la Recherche Scientifique
Številka projekta:2.5020.11

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:strojno učenje, konvolucijske nevronske mreže, interpolacija, površinska temperatura morja, satelitske meritve


Nazaj