Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Synergetic boost of functional properties near critical end points in antiferroelectric systems
Authors:ID Jurečič, Vida, Institut Jožef Stefan (Author)
ID Fulanović, Lovro (Author)
ID Koruza, Jurij (Author)
ID Bobnar, Vid, Institut Jožef Stefan (Author)
ID Novak, Nikola, Institut Jožef Stefan (Author)
Files:URL URL - Source URL, visit https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.7.114407
 
.pdf PDF - Presentation file, download (713,61 KB)
MD5: A93E5FE2E0A2A819589FA6DE31E60BD9
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IJS - Jožef Stefan Institute
Abstract:The increase of the dielectric permittivity with an electric field and enhanced energy storage properties make antiferroelectrics very attractive for high-power electronic applications needed in emerging green energy technologies and neuromorphic computing platforms. Their exceptional functional properties are closely related to the electric field-induced antiferroelectric↔ferroelectric phase transition, which can be driven toward a critical end point by manipulation with an external electric field. The critical fluctuation of physical properties at the critical end point in ferroelectrics is a promising approach to improve their functional properties. Here, we demonstrate the existence of two critical end points in antiferroelectric ceramics with a ferroelectric-antiferroelectric-paraelectric phase sequence, using the model system Pb 0.99 Nb 0.02 [ ( Zr 0.57 Sn 0.43 ) 0.92 Ti 0.08 ] 0.98 O 3 . The critical fluctuation of the dielectric permittivity in the proximity of the antiferroelectric-to-paraelectric critical end point is responsible for the strong enhancement of the dielectric tunability (by a factor of > 2 ) measured at ≈ 395 K. The enhancement of the energy storage density at ≈ 370 K is related to the proximity of the ferroelectric-to-antiferroelectric critical end point. These findings open possibilities for material design and pave the way for the next generation of high-energy storage materials.
Keywords:electronic applications, high-power electronic, green energy, electric field
Publication status:Published
Publication version:Author Accepted Manuscript
Submitted for review:11.08.2023
Article acceptance date:17.10.2023
Publication date:16.11.2023
Publisher:American Physical Society
Year of publishing:2023
Number of pages:Str. 114407-114415
Numbering:Vol. 7, iss. 11
Source:ZDA
PID:20.500.12556/DiRROS-19229 New window
UDC:53
ISSN on article:2475-9953
DOI:doi.org/10.1103/PhysRevMaterials.7.114407 New window
COBISS.SI-ID:173741315 New window
Copyright:©2023 American Physical Society
Note:Nasl. z nasl. zaslona; Opis vira z dne 27. 11. 2023;
Publication date in DiRROS:10.07.2024
Views:231
Downloads:151
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Physical review materials
Publisher:American Physical Society
ISSN:2475-9953
COBISS.SI-ID:31354663 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J2-4464
Name:Antiferoelektrični materiali za hladilne in energetske elektronske aplikacije

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0125
Name:Fizika kvantnih in funkcionalnih materialov

Funder:Other - Other funder or multiple funders
Name:Fermi Level Engineering of Antiferroelectric Materials for Energy Storage and Insulation Systems
Acronym:FLAME

Secondary language

Language:Slovenian
Keywords:zelena energija, aplikacije, električna polja


Back