Naslov: | Best possible upper bounds on the restrained domination number of cubic graphs |
---|
Avtorji: | ID Brešar, Boštjan (Avtor) ID Henning, Michael A. (Avtor) |
Datoteke: | PDF - Predstavitvena datoteka, prenos (2,13 MB) MD5: 5A65E5661DF4CBFCFB55FA237EAE42DB
URL - Izvorni URL, za dostop obiščite https://onlinelibrary.wiley.com/doi/10.1002/jgt.23095
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | A dominating set in a graph $G$ is a set $S$ of vertices such that every vertex in $V(G) \setminus S$ is adjacent to a vertex in $S$. A restrained dominating set of $G$ is a dominating set $S$ with the additional restraint that the graph $G - S$ obtained by removing all vertices in $S$ is isolate-free. The domination number $\gamma(G)$ and the restrained domination number $\gamma_{r}(G)$ are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of $G$. Let $G$ be a cubic graph of order $n$. A classical result of Reed [Combin. Probab. Comput. 5 (1996), 277-295] states that $\gamma(G) \le \frac{3}{8}n$, and this bound is best possible. To determine a best possible upper bound on the restrained domination number of $G$ is more challenging, and we prove that $\gamma_{r}(G) \le \frac{2}{5}n$. |
---|
Ključne besede: | domination, restrained domination, cubic graphs |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.08.2024 |
---|
Leto izida: | 2024 |
---|
Št. strani: | str. 763–815 |
---|
Številčenje: | Vol. 106, iss. 4 |
---|
PID: | 20.500.12556/DiRROS-19113 |
---|
UDK: | 519.17 |
---|
ISSN pri članku: | 0364-9024 |
---|
DOI: | 10.1002/jgt.23095 |
---|
COBISS.SI-ID: | 199137795 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 18.06.2024 |
---|
Število ogledov: | 370 |
---|
Število prenosov: | 227 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |