Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Connectivity with uncertainty regions given as line segments
Authors:ID Cabello, Sergio (Author)
ID Gajser, David (Author)
Files:.pdf PDF - Presentation file, download (685,98 KB)
MD5: 17304811F1157DDF1FCA980BD1E379BD
 
URL URL - Source URL, visit https://link.springer.com/article/10.1007/s00453-023-01200-5
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:For a set ${\mathcal Q}$ of points in the plane and a real number $\delta \ge 0$, let $\mathbb{G}_\delta({\mathcal Q})$ be the graph defined on ${\mathcal Q}$ by connecting each pair of points at distance at most $\delta$. We consider the connectivity of $\mathbb{G}_\delta({\mathcal Q})$ in the best scenario when the location of a few of the points is uncertain, but we know for each uncertain point a line segment that contains it. More precisely, we consider the following optimization problem: given a set ${\mathcal P}$ of $n-k$ points in the plane and a set ${\mathcal S}$ of $k$ line segments in the plane, find the minimum $\delta \ge 0$ with the property that we can select one point $p_s\in s$ for each segment $s\in {\mathcal S}$ and the corresponding graph $\mathbb{G}_\delta( {\mathcal P}\cup \{ p_s\mid s\in {\mathcal S}\})$ is connected. It is known that the problem is NP-hard. We provide an algorithm to exactly compute an optimal solution in ${\mathcal O}(f(k) n \log n)$ time, for a computable function $f(\cdot)$. This implies that the problem is FPT when parameterized by $k$. The best previous algorithm uses ${\mathcal O}((k!)^k k^{k+1}\cdot n^{2k})$ time and computes the solution up to fixed precision.
Keywords:computational geometry, uncertainty, geometric optimization, fixed parameter tractability, parametric search
Publication status:Published
Publication version:Version of Record
Publication date:01.05.2024
Year of publishing:2024
Number of pages:str. 1512-1544
Numbering:Vol. 86, iss. 5
PID:20.500.12556/DiRROS-18913 New window
UDC:519.17
ISSN on article:0178-4617
DOI:10.1007/s00453-023-01200-5 New window
COBISS.SI-ID:180364547 New window
Publication date in DiRROS:13.05.2024
Views:421
Downloads:310
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Algorithmica
Shortened title:Algorithmica
Publisher:Springer
ISSN:0178-4617
COBISS.SI-ID:24917760 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-1693
Name:Sodobni in novi metrični koncepti v teoriji grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-2452
Name:Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0218
Name:Prepletanje geometrije, topologije in algebre v strukturni in topološki teoriji grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0285
Name:Metrični problemi v grafih in hipergrafih

Funder:EC - European Commission
Project number:101071836
Name:KARST: Predicting flow and transport in complex Karst systems
Acronym:KARST

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Back