Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Exploiting image quality measure for automatic trajectory generation in robot-aided visual quality inspection
Avtorji:ID Jafari-Tabrizi, Atae (Avtor)
ID Gruber, Dieter P. (Avtor)
ID Gams, Andrej, Institut Jožef Stefan (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s00170-024-13609-5#article-info
 
.pdf PDF - Predstavitvena datoteka, prenos (3,00 MB)
MD5: 4F1D767A2FAFE82140015A562D0FCBC6
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:Currently, the standard method of programming industrial robots is to perform it manually, which is cumbersome and time-consuming. Thus, it can be a burden for the flexibility of inspection systems when a new component with a different design needs to be inspected. Therefore, developing a way to automate the task of generating a robotic trajectory offers a substantial improvement in the field of automated manufacturing and quality inspection. This paper proposes and evaluates a methodology for automatizing the process of scanning a 3D surface for the purpose of quality inspection using only visual feedback. The paper is divided into three sub-tasks in the same general setting: (1) autonomously finding the optimal distance of the camera on the robot’s end-effector from the surface, (2) autonomously generating a trajectory to scan an unknown surface, and (3) autonomous localization and scan of a surface with a known shape, but with an unknown position. The novelty of this work lies in the application that only uses visual feedback, through the image focus measure, for determination and optimization of the motion. This reduces the complexity and the cost of such a setup. The methods developed have been tested in simulation and in real-world experiments and it was possible to obtain a precision in the optimal pose of the robot under 1 mm in translational, and 0.1° in angular directions. It took less than 50 iterations to generate a trajectory for scanning an unknown free-form surface. Finally, with less than 30 iterations during the experiments it was possible to localize the position of the surface. Overall, the results of the proposed methodologies show that they can bring substantial improvement to the task of automatic motion generation for visual quality inspection.
Ključne besede:robot learning, eobotic quality inspection, visual quality inspection
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:29.11.2023
Datum sprejetja članka:05.04.2024
Datum objave:26.04.2024
Založnik:Springer Nature
Leto izida:2024
Št. strani:str. [1-17]
Številčenje:Vol. , iss. , [article no.]
Izvor:Švica
PID:20.500.12556/DiRROS-18884 Novo okno
UDK:007.52
ISSN pri članku:1433-3015
DOI:10.1007/s00170-024-13609-5 Novo okno
COBISS.SI-ID:194551555 Novo okno
Avtorske pravice:© The Author(s) 2024
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 7. 5. 2024;
Datum objave v DiRROS:09.05.2024
Število ogledov:528
Število prenosov:622
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:The international journal of advanced manufacturing technology
Skrajšan naslov:Int. j. adv. manuf. technol.
Založnik:Springer
ISSN:1433-3015
COBISS.SI-ID:513743129 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J2-4457
Naslov:Robotsko pregledovanje in manipulacija tekstila in tkanin (RTFM)

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0076
Naslov:Avtomatika, Robotika in Biokibernetika

Financer:Drugi - Drug financer ali več financerjev
Program financ.:DIGITOP

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Federal Ministry of Digital and Economic Affairs
Številka projekta:Grant No.: 879785

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:26.04.2024

Nazaj