Title: | The Calabi-Yau problem for minimal surfaces with Cantor ends |
---|
Authors: | ID Forstnerič, Franc (Author) |
Files: | PDF - Presentation file, download (516,47 KB) MD5: 0BAFE7232DED29B49FB74D3E58B0F5E6
URL - Source URL, visit https://ems.press/journals/rmi/articles/6866102
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
---|
Abstract: | We show that every connected compact or bordered Riemann surface contains a Cantor set whose complement admits a complete conformal minimal immersion in ${\mathbb R}^3$ with bounded image. The analogous result holds for holomorphic immersions into any complex manifold of dimension at least $2$, for holomorphic null immersions into ${\mathbb C}^n$ with $n \ge 3$, for holomorphic Legendrian immersions into an arbitrary complex contact manifold, and for superminimal immersions into any selfdual or anti-self-dual Einstein four-manifold. |
---|
Keywords: | minimal surfaces, Calabi–Yau problem, null curve, Legendrian curve |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.01.2023 |
---|
Year of publishing: | 2023 |
---|
Number of pages: | str. 2067-2077 |
---|
Numbering: | Vol. 39, no. 6 |
---|
PID: | 20.500.12556/DiRROS-18630 |
---|
UDC: | 517.5 |
---|
ISSN on article: | 0213-2230 |
---|
DOI: | 10.4171/RMI/1365 |
---|
COBISS.SI-ID: | 176903939 |
---|
Note: |
|
---|
Publication date in DiRROS: | 08.04.2024 |
---|
Views: | 449 |
---|
Downloads: | 196 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |