Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:The Sierpiński product of graphs
Authors:ID Kovič, Jurij (Author)
ID Pisanski, Tomaž (Author)
ID Zemljič, Sara Sabrina (Author)
ID Žitnik, Arjana (Author)
Files:.pdf PDF - Presentation file, download (533,30 KB)
MD5: 5B2EE11E73604A9130960C81137B6CF1
 
URL URL - Source URL, visit https://amc-journal.eu/index.php/amc/article/view/1970/1763
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:In this paper we introduce a product-like operation that generalizes the construction of the generalized Sierpiński graphs. Let $G$, $H$ be graphs and let $f: V(G) \to V(H)$ be a function. Then the Sierpiński product of graphs $G$ and $H$ with respect to $f$, denoted by $G\otimes_f H$, is defined as the graph on the vertex set $V(G) \times V(H)$, consisting of $|V(G)|$ copies of $H$; for every edge $\{g, g'\}$ of $G$ there is an edge between copies $gH$ and $g'H$ of form $\{(g, f(g'), (g', f(g))\}$. Some basic properties of the Sierpiński product are presented. In particular, we show that the graph $G\otimes_f H$ is connected if and only if both graphs $G$ and $H$ are connected and we present some conditions that $G, \, H$ must fulfill for $G\otimes_f H$ to be planar. As for symmetry properties, we show which automorphisms of $G$ and $H$ extend to automorphisms of $G\otimes_f H$. In several cases we can also describe the whole automorphism group of the graph $G\otimes_f H$. Finally, we show how to extend the Sierpiński product to multiple factors in a natural way. By applying this operation $n$ times to the same graph we obtain an alternative approach to the well-known $n$-th generalized Sierpiński graph.
Keywords:Sierpiński graphs, graph products, connectivity, planarity, symmetry
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2023
Year of publishing:2023
Number of pages:art. P1.01 (25 str.)
Numbering:Vol. 23, no. 1
PID:20.500.12556/DiRROS-18479 New window
UDC:519.17
ISSN on article:1855-3966
DOI:10.26493/1855-3974.1970.29e New window
COBISS.SI-ID:143319043 New window
Note:Soavtorji: Tomaž Pisanski, Sara Sabrina Zemljič, Arjana Žitnik;
Publication date in DiRROS:19.03.2024
Views:640
Downloads:440
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Ars mathematica contemporanea
Publisher:Društvo matematikov, fizikov in astronomov, Društvo matematikov, fizikov in astronomov, Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije
ISSN:1855-3966
COBISS.SI-ID:239049984 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Project number:P1-0294
Name:Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju

Funder:ARRS - Slovenian Research Agency
Project number:J1-9187
Name:Akcijski grafi in tehnike krovnih grafov

Funder:ARRS - Slovenian Research Agency
Project number:J1-7051
Name:Neodvisnost in dominacija v strukturiranih grafovskih razredih

Funder:ARRS - Slovenian Research Agency
Project number:J1-7110
Name:RAZISKOVANJE NOTRANJE STRUKTURE STOLPNIH GRAFOV

Funder:ARRS - Slovenian Research Agency
Project number:J1-1691
Name:Weissova domneva in posplošitve

Funder:ARRS - Slovenian Research Agency
Project number:N1-0032
Name:Grafi, grupe, konfiguracije in geometrije

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:grafi Sierpińskega, produkti grafov, povezanost, ravninskost, simetrija


Back