Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Cubic vertex-transitive graphs admitting automorphisms of large order
Authors:ID Potočnik, Primož (Author)
ID Toledo, Micael (Author)
Files:URL URL - Source URL, visit https://link.springer.com/article/10.1007/s40840-023-01526-x
 
.pdf PDF - Presentation file, download (929,04 KB)
MD5: 790A1A6A18EA128B3BBC5528B27A6A67
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:A connected graph of order $n$ admitting a semiregular automorphism of order $n/k$ is called a $k$-multicirculant. Highly symmetric multicirculants of small valency have been extensively studied, and several classification results exist for cubic vertex- and arc-transitive multicirculants. In this paper, we study the broader class of cubic vertex-transitive graphs of order $n$ admitting an automorphism of order $n/3$ or larger that may not be semiregular. In particular, we show that any such graph is either a $k$-multicirculant for some $k \le 3$, or it belongs to an infinite family of graphs of girth $6$.
Keywords:cubic vertex-transitive graphs, multicirculants, automorphisms of large order
Publication status:Published
Publication version:Version of Record
Publication date:01.07.2023
Year of publishing:2023
Number of pages:art. 133 (33 str.)
Numbering:Vol. 46, iss. 4
PID:20.500.12556/DiRROS-18433 New window
UDC:519.1
ISSN on article:0126-6705
DOI:10.1007/s40840-023-01526-x New window
COBISS.SI-ID:155100675 New window
Note:
Publication date in DiRROS:18.03.2024
Views:494
Downloads:222
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Bulletin of the Malaysian Mathematical Sciences Society
Shortened title:Bull. Malays. Math. Sci. Soc.
Publisher:Springer Nature, Malaysian Mathematical Society.
ISSN:0126-6705
COBISS.SI-ID:515781657 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:P1-0294-2020
Name:Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju

Funder:ARIS - Slovenian Research and Innovation Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0216-2021
Name:Simetrije, negibnost in prožnost grafov

Funder:ARRS - Slovenian Research Agency
Funding programme:Young researchers

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Back