Naslov: | Complete nonsingular holomorphic foliations on Stein manifolds |
---|
Avtorji: | ID Alarcón, Antonio (Avtor) ID Forstnerič, Franc (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s00009-023-02566-0
PDF - Predstavitvena datoteka, prenos (433,06 KB) MD5: B229C13B5436695289C88D0816A94778
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | Let $X$ be a Stein manifold of complex dimension $n \ge 1$ endowed with a Riemannian metric ${\mathfrak g}$. We show that for every integer $k$ with $\left[\frac{n}{2}\right] \le k \le n-1$ there is a nonsingular holomorphic foliation of dimension $k$ on $X$ all of whose leaves are topologically closed and ${\mathfrak g}$-complete. The same is true if $1\le k \left[\frac{n}{2}\right]$ provided that there is a complex vector bundle epimorphism $TX\to X \times \mathbb{C}^{n-k}$. We also show that if $\mathcal{F}$ is a proper holomorphic foliation on $\mathbb{C}^n$ $(n > 1)$ then for any Riemannian metric ${\mathfrak g}$ on $\mathbb{C}^n$ there is a holomorphic automorphism $\Phi$ of $\mathbb{C}^n$ such that the image foliation $\Phi_*\mathcal{F}$ is ${\mathfrak g}$-complete. The analogous result is obtained on every Stein manifold with Varolin's density property. |
---|
Ključne besede: | Stein manifolds, complete holomorphic foliations, density property |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.01.2024 |
---|
Leto izida: | 2024 |
---|
Št. strani: | 16 str. |
---|
Številčenje: | Vol. 21, iss. 1, article no. 25 |
---|
PID: | 20.500.12556/DiRROS-18206 |
---|
UDK: | 517.5 |
---|
ISSN pri članku: | 1660-5446 |
---|
DOI: | 10.1007/s00009-023-02566-0 |
---|
COBISS.SI-ID: | 183749123 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 19.02.2024 |
---|
Število ogledov: | 569 |
---|
Število prenosov: | 239 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |