Naslov: | Resolvability and convexity properties in the Sierpiński product of graphs |
---|
Avtorji: | ID Henning, Michael A. (Avtor) ID Klavžar, Sandi (Avtor) ID Yero, Ismael G. (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s00009-023-02544-6
PDF - Predstavitvena datoteka, prenos (432,07 KB) MD5: 074DE5ECE31FEB8F337B464DEC07BA72
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | Let $G$ and $H$ be graphs and let $f \colon V(G)\rightarrow V(H)$ be a function. The Sierpiński product of $G$ and $H$ with respect to $f$, denoted by $G \otimes _f H$, is defined as the graph on the vertex set $V(G)\times V(H)$, consisting of $|V(G)|$ copies of $H$; for every edge $gg'$ of $G$ there is an edge between copies $gH$ and $g'H$ of $H$ associated with the vertices $g$ and $g'$ of $G$, respectively, of the form $(g,f(g'))(g',f(g))$. The Sierpiński metric dimension and the upper Sierpiński metric dimension of two graphs are determined. Closed formulas are determined for Sierpiński products of trees, and for Sierpiński products of two cycles where the second factor is a triangle. We also prove that the layers with respect to the second factor in a Sierpiński product graph are convex. |
---|
Ključne besede: | Sierpiński product of graphs, metric dimension, trees, convex subgraph |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.01.2024 |
---|
Leto izida: | 2024 |
---|
Št. strani: | 17 str. |
---|
Številčenje: | Vol. 21, iss. 1, article no. 3 |
---|
PID: | 20.500.12556/DiRROS-18195 |
---|
UDK: | 519.17 |
---|
ISSN pri članku: | 1660-5446 |
---|
DOI: | 10.1007/s00009-023-02544-6 |
---|
COBISS.SI-ID: | 172901379 |
---|
Opomba: | Spletna objava: 18. 11. 2023;
|
---|
Datum objave v DiRROS: | 16.02.2024 |
---|
Število ogledov: | 604 |
---|
Število prenosov: | 286 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |