Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:A data-driven machine learning approach for brain-computer interfaces targeting lower limb neuroprosthetics
Avtorji:ID Dillen, Arnau (Avtor)
ID Lathouwers, Elke (Avtor)
ID Miladinović, Aleksandar (Avtor)
ID Marušič, Uroš (Avtor)
ID Ghaffari, Fakhreddine (Avtor)
ID Romain, Olivier (Avtor)
ID Meeusen, Romain (Avtor)
ID De Pauw, Kevin (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (858,15 KB)
MD5: CA23B57241CA67C0CDF770C944FE66DE
 
URL URL - Izvorni URL, za dostop obiščite https://doi.org/10.3389/fnhum.2022.949224
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo ZRS Koper - Znanstveno-raziskovalno središče Koper / Centro di Ricerche Scientifiche Capodistria
Povzetek:Prosthetic devices that replace a lost limb have become increasingly performant in recent years. Recent advances in both software and hardware allow for the decoding of electroencephalogram (EEG) signals to improve the control of active prostheses with brain-computer interfaces (BCI). Most BCI research is focused on the upper body. Although BCI research for the lower extremities has increased in recent years, there are still gaps in our knowledge of the neural patterns associated with lower limb movement. Therefore, the main objective of this study is to show the feasibility of decoding lower limb movements from EEG data recordings. The second aim is to investigate whether well-known neuroplastic adaptations in individuals with an amputation have an influence on decoding performance. To address this, we collected data from multiple individuals with lower limb amputation and a matched able-bodied control group. Using these data, we trained and evaluated common BCI methods that have already been proven effective for upper limb BCI. With an average test decoding accuracy of 84% for both groups, our results show that it is possible to discriminate different lower extremity movements using EEG data with good accuracy. There are no significant differences (p = 0.99) in the decoding performance of these movements between healthy subjects and subjects with lower extremity amputation. These results show the feasibility of using BCI for lower limb prosthesis control and indicate that decoding performance is not influenced by neuroplasticity-induced differences between the two groups.
Ključne besede:neuroprosthetics, brain-computer interface, machine learning, electroencephalography, data-driven learning, lower limb amputation
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum sprejetja članka:30.06.2022
Datum objave:19.07.2022
Leto izida:2022
Št. strani:str. 1-15
Številčenje:Vol. 16, art. 949224
PID:20.500.12556/DiRROS-15311 Novo okno
UDK:615.477.22:004.85
ISSN pri članku:1662-5161
DOI:10.3389/fnhum.2022.949224 Novo okno
COBISS.SI-ID:116118019 Novo okno
Avtorske pravice: © 2022 Dillen, Lathouwers, Miladinovic, Marusic, Ghaari, Romain, Meeusen and De Pa
Opomba:Nasl. z nasl. zaslona; Soavtorji: Elke Lathouwers, Aleksandar Miladinović, Uros Marusic, Fakhredinne Ghaffari, Olivier Romain, Romain Meeusen, Kevin De Pauw; Opis vira z dne 20. 7. 2022;
Datum objave v DiRROS:21.07.2022
Število ogledov:931
Število prenosov:641
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Frontiers in human neuroscience
Skrajšan naslov:Front. hum. neurosci.
Založnik:Frontiers Research Foundation
ISSN:1662-5161
COBISS.SI-ID:49074786 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:19.07.2022

Sekundarni jezik

Jezik:Ni določen
Ključne besede:nevroprostetika, učenje na podlagi podatkov, amputacija spodnjega uda


Nazaj